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ABSTRACT

Motivation: We consider the problem of clustering a population of

Comparative Genomic Hybridization (CGH) data samples. The goal

is to develop a systematic way of placing patients with similar CGH

imbalanceprofiles into thesamecluster.Ourexpectation is that patients

with the same cancer types will generally belong to the same cluster as

their underlying CGH profiles will be similar.

Results: We focus on distance-based clustering strategies. We do

this in two steps. (1) Distances of all pairs of CGH samples are

computed. (2) CGH samples are clustered based on this distance.

We develop three pairwise distance/similarity measures, namely raw,

cosine and sim. Rawmeasure disregards correlation between contigu-

ous genomic intervals. It compares the aberrations in each genomic

interval separately. The remaining measures assume that consecutive

genomic intervals may be correlated. Cosine maps pairs of CGH sam-

ples into vectors in a high-dimensional space and measures the angle

between them. Sim measures the number of independent common

aberrations. We test our distance/similarity measures on three well

known clustering algorithms, bottom-up, top-down and k-means with

and without centroid shrinking. Our results show that sim consistently

performs better than the remaining measures. This indicates that the

correlation of neighboring genomic intervals should be considered in

the structural analysis of CGH datasets. The combination of sim with

top-down clustering emerged as the best approach.

Availability: All software developed in this article and all the datasets

are available from the authors upon request.

Contact: juliu@cise.ufl.edu

1 INTRODUCTION

Numerical and structural chromosomal imbalances are one of the

most prominent and pathogenetically relevant features of neoplastic

cells (Mitelman et al., 1972). Over the past decades, thousands of

(molecular-) cytogenetic studies of human neoplasias have searched

for insights into genetic mechanisms of tumor development and the

detection of targets for pharmacologic intervention. It is assumed

that repetitive chromosomal aberration patterns reflect the supposed

cooperation of a multitude of tumor relevant genes (Vogelstein and

Kinzler, 1993) in most malignant diseases.

One method for measuring genomic aberrations is Comparative

Genomic Hybridization (CGH) (Kallioniemi et al., 1992). CGH is a

molecular-cytogenetic analysis method for detecting regions with

genomic imbalances (gains or losses of DNA segments). Raw data

from CGH experiments is expressed as the ratio of normalized

fluorescence of tumor and reference DNA. Normalized CGH

ratio data surpassing predefined thresholds is considered indicative

for genomic gains or losses, respectively. In contrast to array CGH,

chromosomal CGH data (on which this paper is based) does not

consist of a (large) number of single measurements (e.g. spot ratios),

but on the ratio data measured along human metaphase chromo-

somes, averaged over a number of measurements (du Manoir et al.,
1992). Because no single measurements are used for the results

composition, the chromosomal CGH results are annotated in a

reverse in situ karyotype format (Mitelman, 1995) describing

imbalanced genomic regions with reference to their chromosomal

location. CGH data of an individual tumor can be considered as an

ordered list of status values, where each value corresponds to a

genomic interval (e.g., a single chromosomal band).The status

can be expressed as a real number (positive, negative or zero for

gain, loss or no aberration, respectively).

In this paper, we focus on the problem of clustering the CGH data

of a population of cancer patient samples. A large number of clus-

tering methods have been developed for various types of datasets

(Jain et al., 1999). However, these methods are not directly applic-

able to CGH data. Cytogenetic aberration data is structurally dif-

ferent from ordinary high-dimensional data since consecutive

dimensions (i.e., genomic intervals) may be correlated. Regional

genomic imbalances arise from the advantage of tumor cells in

gaining additional copies of oncogenes (Schwab et al., 1984), or
losing one or both copies of genes that inhibit oncogenesis [tumor

suppressor genes Knudson, 1971]. The minimal change involving

one relevant gene is a ‘point like event’ on the cytogenetic scale,

beyond the spatial resolution of Metaphase-based techniques.

Therefore, a point-likes genomic aberration may expand to the

neighboring intervals and result in a contiguous run of gain or

loss status in CGH data.

We develop novel distance-based methods that effectively exploit

these correlations between consecutive genomic intervals. Our work

is built in two steps. In the first step, we measure the distance/

similarity between all pairs of samples. For this purpose, we develop

three metrics to compute the similarity/distance between two CGH

samples. The first one, raw distance, compares the value or status of

each genomic interval separately. The second measure, segment-

based similarity, merges contiguous aberrations of the same type
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into segments. It then counts the number of common segments

between the given two samples. The third measure, segment-

based cosine similarity maps segments to vectors in a high dimen-

sional space. It computes the distance between two vectors as the

cosine of the angle between them. In the second step, we build

clusters of samples based on pairwise similarities. We use three

main clustering techniques k-means (MacQueen, 1967), complete-

link bottom-up (King, 1967) and top-down (Steinbach et al., 2000).
Two techniques to further improve the cluster qualities were also

implemented. The first one combines each of the bottom-up and top-

down clustering method with k-means so that the former method can

provide reasonable initial cluster seeds for the k-means method. The

second one shrinks centroid (Tibshirani et al., 2002) to reduce the

number of features contributing to the nearest centroid computation

in k-means. Experimental results show that segment-based similar-

ity distance measures are better indicators of biological proximity

between pairs of samples. This measure when combined with the

top-down method produces the best clusters.

The rest of the paper is organized as follows. Section 2 introduces

the proposed distance measures and clustering techniques. Section 3

presents the experimental results. Section 4 discusses the related

work and Section 5 concludes with a brief discussion.

2 METHOD

Genomic aberration data from CGH experiments is usually communicated

in a reverse in situ karyotype annotation format (Mitelman, 1995). We use

this strategy and represent gain, loss and no change with +1, �1 and 0,

respectively, throughout the paper.

We propose to use three different distance-based clustering methods for

CGH data and survey their performance. The key problem, however, is to

compute the proximity of two CGH samples. In Section 2.1, we discuss the

three measures we developed for such pairwise comparison. We briefly

explain the three clustering algorithms we used to cluster a population of

samples in Section 2.2. Two techniques that further optimize the cluster

qualities are discussed in Section 2.3.

2.1 Comparison of two samples

Let X ¼ x1, x2, . . . , xm and Y ¼ y1, y2, . . . , ym be two CGH samples. Here, xi
and yi denote the value or status of the i-th genomic interval of X and Y,
respectively. The proximity between X and Y can be computed in terms of

distance or similarity. In this section we develop three such measures of

distance/similarity.

2.1.1 Raw distance Our first measure assumes that the genomic inter-

vals are independent of each other. This assumption is often made in existing

literature to simplify the problem of computing distances (Picard et al.,
2005b). If both samples have gain (or loss) at the same genomic interval

then we consider them similar at that position. Otherwise, that genomic

interval contributes to the distance between them. Also, we assume that

all genomic intervals have the same importance. Thus, each genomic interval

contributes the same amount to the total distance. Formally, the distance is

computed as
Pm

j¼1 diff(xj, yj). Here diff(xj,yj) ¼ 1 if xj 6¼ yj or xj ¼ 0.

Otherwise diff(xj, yj) ¼ 0. The similarity is obtained by subtracting the

distance from m, the number of genomic intervals of the CGH samples.

An example is shown in Figure 1

This distance function is similar to Hamming distance in principle

because it compares the genomic intervals of both samples one by one.

We call this distance Raw since it is computed on raw CGH data. Raw

distance between two samples is small only if the samples have gains or

losses in the same positions. Raw distance ranges between [0, m].

2.1.2 Segment-based similarity This method takes the fact that con-

secutive genomic intervals are usually correlated. A contiguous block of

gains (or losses) can be caused by a point-like aberration at a single genomic

interval. We use the term segment to represent a contiguous block of aber-

rations of the same type. For example, in Figure 2, sample X contains four

segments. The first and third segments are gain type while the second and

fourth segment are loss type. We call two segments from two samples

overlapping if they have at least one common genomic interval of the

same type. For example, the first segment of X is overlapping with the

first segment of Y in Figure 2. Also the third segment of X is overlapping

with the second segment of Y. Next, we develop a segment-based similarity

measure called Sim.

Given two CGH samples X and Y, Sim constructs maximal segments by

combining as many contiguous aberrations of the same type as possible.

Formally, the genomic intervals xi, xi+ 1, . . . , xj, for 1 � i � j � m, define a

segment if genomic intervals xi through xj are in the same chromosome, the

values from xi to xj are all gains or all losses, and xi�1 and xj+1 are different

than xi. Thus, each sample translates into a sequence of segments. After this

transformation, Sim assumes that the segments are independent of each other

and gives the same importance to all the segments regardless of the number

of genomic intervals in them. Sim computes the similarity between two CGH

samples as the number of overlapping segment pairs. This is justified

because each overlap may indicate a common point-like aberration in

both samples which then led to the corresponding overlapping segments.

An example is shown in the Figure 2. There are two important observations

that follows from the definition of Sim. First, unlike the Raw distance

measure, Sim considers an overlap of arbitrary number of genomic intervals

as a single match. Second, although two samples have different values for the

same genomic interval, Sim does not consider this as a mismatch if it is an

extension of an overlap. For example, in Figure 2, the fifth genomic intervals

of sample X and Y have different values, but we still consider this position a

match because it could be an extension of an overlap.

2.1.3 Segment-based cosine similarity Segment-based similarity

grows linearly with the number of common segments. However, the aber-

ration patterns of some cancer types can be less complex than the others. The

samples that belong to these cancer types share fewer common segments

leading to small values of Sim even though the samples are almost identical.

Fig. 1. The distance on raw CGH data. X and Y are two CGH samples. The

value of each genomic interval shows the status (i.e. gain loss or no change) of

that interval. The distance between X and Y is
Pm

j¼1 diff (xj, yj) ¼ 9.

Fig. 2. X and Y are two CGH samples with the values of genomic intervals

shown in the order of positions. The segments are underlined. The overlap-

ping segments are shown with arrows. Since there are two overlapping seg-

ments; one from position 3 to 4 and the other at position 10, the similarity

between X and Y is 2.
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Cosine similarity of two vectors normalizes the similarity by measuring the

cosine of the angle between them. This measure is the most commonly used

method to compute the similarity between two directional data in vector-

space model (Salton, 1989). In this section, we extend the cosine similarity to

measure the proximity of two CGH samples.

Let X and Y be two CGH samples. We first map X and Y to two vectors X̂X

and ŶY 2 Rg, where g is the number of dimensions of the vectors. Usually,

g � m, where m is the number of genomic intervals of CGH samples. The

mapping process is also based on segments and works as follows. First, we

translate each sample into a sequence of segments. Let us define segment

sequenceG,H that corresponds to the sample X, Y respectively. Without loss

of generality, we can assume that for all the genomic intervals in Y, if they

belong to any segment in H, the genomic intervals in X at the same positions

are also covered by the segments in G. Here, we say that a segment covers a

consecutive block of genomic intervals only if for each genomic interval,

either it belongs to this segment or it is of no-change status and the aberration

of this segment can be extended to this genomic interval. Next, we scan the

segment sequence G in the ascending order of the genomic intervals. For

each segment gi 2 G, if there exist an overlapping segment hj 2 H, we add a

new dimension to both vectors X̂X and ŶY . We then assign value 1 to this

dimension of X̂X and ŶY , indicating that the value of this dimension are exactly

the same in the two vectors. If no overlapping segment hj 2 H exists, we add

a new dimension to both vectors with value 1 assigned to vector X̂X and value

0 assigned to vector ŶY , which indicates that the values of the new dimension

in two vectors are orthogonal. An example of the segmenting and mapping

step for this measure is shown in Figure 3. After the two CGH samples X and

Y have been mapped to two vectors, the cosine similarity between X and Y is

computed as

CðX̂X‚ ŶYÞ ¼
Pm

i¼1 x̂xi · ŷyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
Pm

i¼1 x̂xi · x̂xiÞð
Pm

i¼1 ŷyi · ŷyiÞ
p :

The majority of genomic intervals in CGH data have zero values (i.e. no

aberration). We call a consecutive block of these genomic intervals gaps. We

ignore the impact of gaps in the above cosine similarity measure. However,

considering the overlapping gaps between two samples might contribute

greatly to the similarity between them. We develop another variant of cosine

similarity which takes the overlapping gaps into consideration. The new

similarity measure changes the mapping step that translates the CGH

data into vectors. First, it extends the definition of segments to be a con-

secutive block of genomic intervals that share the same status, i.e. gain, loss

or no change. That means, gaps are also included in the segments in this way.

Then it translates the CGH data into a sequence of segments with some of the

segments representing gaps. Next, a scan is performed on the segment

sequence G. For each gap in G, if there exists an overlapping gap in H,
a new dimension will be added to both vectors and a pair of value 1 will be

assigned to them. Other mapping steps of gain or loss segments and com-

putation of cosine similarity remains unchanged. Compared to the previous

cosine similarity measure, this measure offers a larger similarity between

two CGH samples due to the impact of overlapping gaps. Thus, we use the

term CosineGaps to represent it, whereas the term CosineNoGaps is used to

represent the previous definition. Both of these measures produce a value

within a range of [0, 1] indicating the similarity between two samples.

2.2 Clustering of samples

With one of the aforementioned distance/similarity measures between two

CGH samples, we can easily apply a distance-based clustering algorithm to

group similar CGH samples together. At a high-level, the problem of clus-

tering is defined as follows. Given a set S of n samples s1, s2, . . . , sn, we

would like to partition S into k subsets C1, C2, . . . ,Ck, such that the samples

assigned to each subset are more similar to each other than the samples

assigned to different subsets. Here, we assume that two samples are similar if

they correspond to the same cancer type.

As we mentioned earlier, our focus in this paper is to evaluate the suit-

ability of various distance/similarity measures together with clustering

algorithms in the context of the CGH data clustering problem. In this section,

we briefly introduce the three distance-based clustering algorithms we used

in our experiments.

2.2.1 K-means Clustering K-means (MacQueen, 1967) is one of the

simplest unsupervised learning algorithms that solve the well-known clus-

tering problem. Its key step is to compute the distance/similarity between a

sample data and the cluster centroid, which is not necessary a real sample.

Since CGH samples are represented as an array of status values, it is not

trivial to compute an accurate centroid for a set of CGH samples. Here, we

develop a variant of the k-means algorithm which is more suitable for our

distance/similarity measures. Compared with standard k-means, our

algorithm omits the step of computing the cluster centroids, but reassigns

a sample according to its average distance to all the samples in a cluster

rather than the distance to the centroid of that cluster. These changes let our

algorithm work for any distance/similarity measure described in Section 2.1.

We first partition the n samples into k clusters by randomly assigning each

sample to one of the k clusters. This random partition forms the initial cluster

seeds for our k-means algorithm. Then we scan the n samples one by one. For

the i-th sample, compute its average distance to all the samples in cluster j,

for 1 < j < k, and then move it to the cluster with the minimum average

distance if that cluster is different from the one it already belongs to. This

scanning process is repeated until there is no movement of samples during a

scan or until a maximum number of iterations is reached.

2.2.2 Complete link bottom-up clustering Complete link (King,

1967) clustering defines the distance between two clusters as the largest

distance between a sample from the first cluster and a sample from the

second cluster. The bottom-up clustering works by designating each sample

as its own cluster initially. Next, each cluster is compared to each other

cluster, and the closest clusters are merged. This process will continue until k
clusters remain.

2.2.3 Top-down clustering This algorithm (Steinbach et al., 2000)
starts by assigning all samples into one cluster. It then bisects this cluster

recursively until k clusters are produced, where k is a user defined parameter.

The bisection is performed in two phases. In the first phase, two samples are

randomly selected as the seeds of two clusters. Then, for each remaining

sample, its similarity to these two seeds is computed and it is assigned to the

cluster whose seed has a higher similarity to that sample. In the second phase,

the clusters are refined. A refinement consists of a number of iterations.

During each iteration, samples are visited one by one. Each sample si, is then
moved to all of the clusters one by one, and a criterion function is computed

for each positioning of si. The criterion function evaluates the quality of the

clusters. We use the term internal measure to represent this criterion func-

tion. The formal definition of internal measure is addressed in Section 3.1.

The sample si is kept in the cluster that maximizes the internal measure. This

refinement process ends as soon as there is no movement of samples during

Fig. 3. This figure shows the cosineNoGaps similarity between two CGH

samples. X and Y are two CGH samples with the values of genomic intervals

shown in the order of positions. The segments are underlined. First, X and Y

are mapped to two vectors X̂X and ŶY respectively. Second, the similarity

between X and Y is computed as CðX̂X‚ ŶYÞ ¼ 0.7071

Distance-based clustering for CGH data

1973



an iteration or after a predefined maximum number of iterations have been

performed. In our experiments, the number of iterations were typically < 20.

After the refinement is finished, the cluster with the largest number of

samples is bisected similarly. Once k clusters are created, the top-down

algorithm ends.

In each iteration of the refinement, O(n) time is needed to compute the

change of the internal measure for each sample. This is because, the sim-

ilarity between that sample and every other sample in each cluster needs to

be accumulated. The time complexity of each iteration is O(n2) as there are

totally n samples. Since the total number of iterations is limited by a small

constant, the complexity of refinement isO(n2). The refinement is performed

every time a new cluster is created. In the above described process the

number of clusters increases by one in every stage until k clusters are created.

Therefore, the overall time complexity of top-down clustering is O(n2k).

To reduce this time complexity, we modify the top-down clustering

algorithm. Essentially, the refinement process is limited to the cluster

being decomposed into smaller clusters. There are two differences

between the modified and the original top-down clustering. First, only

the samples in the decomposed cluster are considered for refinement.

Second, a sample is relocated only to the two newly created clusters rather

than all the clusters. In the best case, the clusters are decomposed in a

balanced fashion. The overall time complexity in this case is

Oðn2 þ 2ð n
2
Þ2 þ � � � þ 2log2kð n

2log2k
Þ2Þ � Oð2n2Þ. In the worst case, a cluster

with n samples could be decomposed into two clusters with n � 1 samples

in one cluster and 1 sample in the other. If this case happens to all the

bisections, the worst case time complexity could be O(kn2). Thus, with this

enhanced refinement process, the average time complexity of top-down

clustering is between O(n2) and O(kn2). We generally expect the time

complexity to be close to O(n2), which results in a factor of k improvement

in time. We call this faster refinement process in the top-down clustering

Local Refinement and the previous refinement process Global Refinement.

It is worth noting that local refinement may produce lower quality clusters.

Our experimental results described in Section 3 show that this deterioration

is small.

2.3 Further optimization on clustering

In this paper, we use two approaches to further optimize the clusters obtained

by the bottom-up or top-down algorithms. We also compare the optimized

results with the non-optimized results of these algorithms in Section 3.

2.3.1 Combining k-means with bottom-up or top-down
methods Similar to the standard k-means, the k-means algorithm used

in this paper does not necessarily find the optimal clusters because it is

significantly sensitive to the initial cluster seeds. This observation motivates

our further optimization by choosing the results of bottom-up or top-down

algorithms as the initial seeds for k-means. That is, after the bottom-up or

top-down clustering, a k-means method will be invoked and the clusters

produced by the bottom-up or top-down clustering will serve as the initial

cluster seeds of k-means. The rest of the k-means clustering remains the

same. This additional k-means step further refines the clusters by using the

more CGH specific distance measures proposed in this paper. We use the

term top-down+ k-means to represent the optimization approach that com-

bines the top-down algorithm with the k-means algorithm. Similarly, we use

term bottom-up+ kmeans to represent the combination of the bottom-up

algorithm and the k-means algorithm.

2.3.2 Centroid shrinking The idea of centroid shrinking was first

introduced by Robert et al. in (Tibshirani et al., 2002) to improve the

nearest-centroid classification. The centroids of a training set are defined

as the average expression of each gene. This idea shrinks the centroids of

each class towards the overall centroid after normalizing by the intra-class

standard deviation for each genomic interval. This normalization has the

effect of assigning more weight to the genomic interval whose status is stable

within samples of the same class, and thus reduces the number of features

contributing to the nearest centroid calculation.We apply this idea to achieve

further optimization of clustering. The centroids of initial clusters found by

the different clustering methods, i.e. bottom-up, top-down, k-means, bottom-

up+ kmeans and top-down+ kmeans, are shrunk towards the overall cen-

troid. Then, a standard k-means using Euclidean distance is invoked to re-

cluster the samples using the shrunken centroids as its initial centroids.

3 RESULTS

Experimental setup: We evaluated the quality and the per-

formance of all the distance/similarity measures and the

clustering methods discussed in this paper. For evaluation of quality

we used different measures belonging to two categories, external

and internal measures. We discuss these measures in detail in

Section 3.1.

We implemented all four distance measures (Raw, Sim,

CosineGaps, CosineNoGaps) and five clustering algorithms

(k-means, top-down, bottom-up, top-down + k-means, bottom-up

+ k-means). Thus, we had 20 different combinations. We have also

implemented the centroid shrinking strategy and applied on each

combination. Note that we use local refinement strategy (see Section

2.2.3) for top-down in our experiments unless otherwise stated.

We use a dataset consisting of 5 020 CGH samples (i.e.

cytogenetic imbalance profiles of tumor samples) taken from the

Progenetix database (Baudis and Cleary, 2001). These samples

belonged to 19 different histopathological cancer types with

> 100 cases and had been coded according to the ICD-O-3 system

(Fritz et al., 2000). The subset with the smallest number of samples

consists of 110 non-neoplastic cases, while the one with largest

number of samples, Adenocarcinoma, NOS (ICD-O 8140/3), con-

tains 1054 cases. Each sample in the dataset consists of 862 ordered

genomic intervals extracted from 24 chromosomes. Each interval is

associated with one of the three values �1, 1 or 0, indicating loss,

gain or no change status of that interval. In principle, our CGH an

dataset can be mapped to an integer matrix of size 5 020 · 862.

We also use a small dataset with 2 510 samples by randomly

selecting 50% of the entire dataset. This small dataset is generated

each time an experiment is running over it.

Our experimental simulations were run on a system with dual

2.59 GHz AMD Opteron Processors, 8 Gb of RAM, and an Linux

operating system.

3.1 Quality analysis measures

In this paper, we hope to identify disease-related signatures of CGH

data by clustering a large number of samples. We assume that

samples belonging to the same cancer type are homogeneous and

should be clustered together. There are a range of different cluster

validation techniques that can be grouped into two categories,

external measure and internal measure (Handl et al., 2005). We

use both measures to evaluate the quality of the clusters. An external

measure evaluates how well the clusters separate samples that

belong to different cancer types. Thus external measure can com-

pare clusters based on different distance/similarity measure. On the

other hand, an internal measure evaluates how good the clustering

algorithm operates on a given distance/similarity measure. This

measure ignores the cancer types of the input samples. Compared

with internal measures, external measures are more reasonable in

reflecting the quality of clusters as they take the cancer types into

consideration. Note that internal measure is a better indicator of

J.Liu et al.
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quality for cancer types that have multiple aberration patterns that

differ significantly.

External measure: An external measure takes a value in [0, 1]

interval. Higher values of this function represent better clustering

quality. An important note is that this measure is independent of the

underlying distance/similarity measure. Thus, the results of differ-

ent distance measures can be compared using external measure.

We use three external measures to evaluate the cluster quality. Let

n, m and k denote the total number of samples, the number of

different cancer types and the number of clusters respectively.

Let a1, a2, . . . , am denote the number of samples that belong to

each cancer type. Similarly, let b1, b2, . . . , bk be the number of

samples that belong to each cluster. Let ci,j, 8i, j, 1 � i � m and

1� j� k, denote the number of samples in j-th cluster that belong to
the i-th cancer type. The first external measure used, known as the

Normalized Mutual Information (NMI) (Zhong and Ghosh, 2005)

function is computed as:

NMI ¼
Pm

i¼1

Pk
j¼1 ci‚ jlogð n · ci‚ jaibj

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

i ailog
ai
n Þð

P
j bjlog

bj
n Þ

q :

The second external measure is F1-measure (Tan et al., 2005). It is
defined as

F1 ¼
1

n

Xm
i¼1

ai max
j

ci‚ j
ai þ bj

:

The third external measure is known as Rand Index (Tan et al.,
2005). In order to compute the Rand Index measure for a given

clustering, two values are calculated.

� f00 ¼ the number of pairs of samples that have different cancer

types and belong to different clusters.

� f11 ¼ the number of pairs of samples that have the same cancer

type and belong same cluster.

The Rand Index is then computed as

Rand Index ¼ f 00 þ f 11�
nðn � 1Þ=2

� :

Unlike other external measures, NMI was computed based on

mutual information I (X; Y) between a random variable X, governing
the cluster labels and a random variable Y, governing the cancer

types. It has been argued that the mutual information is a superior

measure than purity or entropy (Strehl and Ghosh, 2002). Moreover,

NMI is quite impartial to the number of clusters (Zhong and Ghosh,

2005).

Internal measure: Unlike the external measure, the value of

internal measure depends on the distance/similarity measure.

Thus, the internal measure of different clusterings obtained by dif-

ferent similarity measures are not comparable. Instead, we use this

measure to compare the clusters obtained by applying different

clustering methods with same similarity function. In this paper,

we implement two internal measures. One is the internal measure

based on compactness (cohesion) (Tan et al., 2005), the other is the
internal measure based on separation.

Let k denote the total number of clusters. Let b1, b2, . . . , bk be
the number of samples that belong to each cluster. We use si and
Cr to represent i-th sample and the r-th cluster respectively. Let

S(si, sj) be the function that evaluates the similarity between the i-th
and j-th sample. The internal measure based on compactness is

computed as

IC ¼
Xk
r¼1

P
i<j‚ si‚ sj2Cr Sðsi‚sjÞ

br
:

The internal measure based on separation is computed as:

IS ¼
Pk

r¼1

Pk
q¼1‚q6¼r

P
si2Cr‚ sj2Cq

Sðsi‚sjÞPk
r¼1

Pk
q¼1‚q6¼r br · bq

Since both internal measures are computed with pairwise similarity,

higher values of IC and lower values of IS represent better

clustering quality respectively.

3.2 Experimental evaluation

In this section, we applied the combinations of four distance/

similarity measures and five clustering methods over the entire

dataset and the small dataset. We compared each combination

according to the qualities of clusters. The cluster results are evalu-

ated using different external measures. Owing to the space limit, we

mainly report the results using NMI and F1-measure in the paper

unless otherwise stated. For the small dataset that are randomly

generated each time, we apply our experiments 100 times and report

the results between fifth and ninety-fifth percentile as the error bar.

Evaluation of distance measures. The purpose of this experi-

ment is to compare the distance/similarity measures discussed in

this paper, namely Raw, Sim, CosineNoGaps, and CosineGaps. In

the experiment, we randomly select 50% of the entire dataset as a

small dataset with 2 510 samples. For each distance/similarity meas-

ure, we created 2, 4, 8, 16, 32 and 64 clusters using five clustering

methods: top-down, bottom-up, k-means, top-down + k-means, and

bottom-up + k-means. This resulted in 6 · 5¼ 30 sets of clusters per

measure. We report the highest value of external measure of all

these 30 sets as the best quality of a measure. We repeat this

experiment for 100 times.

The median of 100 highest values for Sim, CosineNoGaps,

CosineGaps and Raw are shown in Table 1. The results of both

NMI and F1-measure show that Sim produces the highest quality

compared with other distance measures. Sim obtains this quality

with top-down clustering method. CosineNoGaps gives slightly

better quality than the other two measures, Raw and CosineGaps.

We conclude that Sim is the most suitable distance/similarity

measure for clustering CGH data.

Evaluation of clustering methods and optimizations. The pur-

pose of these experiment is to compare the quality of clustering

algorithms with a fixed distance/similarity measure. We create 8,

16, 32 and 64 clusters using different clustering methods with and

Table 1. The highest value of external measures for different distance/

similarity measure

Sim CosineNoGaps CosineGaps Raw

NMI 0.368 0.265 0.228 0.239

F1-measure 0.34 0.258 0.215 0.235

Rand Index 0.903 0.899 0.898 0.896

All numbers here are the medians of 100 results.
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without centroid shrinking strategy. We only report the results for

Sim due to the space limitations and because Sim gives the best

external measure values among all distance/similarity measures.

We randomly select 50 % of the entire dataset (i.e. 2 510 samples)

and cluster it. We then compute the external measure for the under-

lying clusters. We repeat this process 100 times and compute the

error bar for the external measure. The error bar indicates the inter-

val where 5–95 % of the results lie. Figure 4a and b show the

NMI and F1-measure respectively. Top-down clustering method

without centroid shrinking gives the best quality consistently in

both figures. The additional k-means step in top-down + k-means

method deteriorates the qualities. Centroid shrinking improves the

results when the quality of the clustering method is low. It hurts the

quality when the quality is high, especially when top-down method

is used. This can be explained as follows. The clustering quality is

low when the patients with different cancer types are clustered

together. This usually indicates that different samples in the

same cluster can contain gain, loss, and no-change status for the

same genomic interval. Such genomic intervals can be considered as

noise. Centroid shrinking filters them out. However, centroid

shrinking has the limitation that its results can be followed by a

standard k-means clustering using Euclidean distance. Therefore,

the underlying similarity measure (i.e. Sim) cannot be used after

shrinking the centroid. Thus, we conclude that top-down method

works best in conjunction with the Sim measure. At the same time,

centroid shrinking strategy does not help the clustering using this

combination. The error bars confirm that the top-down clustering

without centroid shrinking works best for Sim measure. The error

bars show that the top-down and the bottom-up methods are more

stable than the k-means method. This is because k-means is signi-

ficantly sensitive to the initial seeds that are randomly generated.

The NMI value of the top-down method increases as the number of

clusters increase from 8 to 64 in Figure 4a. On the other hand, the

F1-measure drops in Figure 4b. This is because F1-measure favors

coarser clustering and is biased towards small number of clusters

while NMI is quite impartial to the number of clusters (Zhong nad

Ghosh, 2005). We do not see the same effect for other clustering

methods because the large variance in the results of other methods,

except bottom-up, hides this effect. For bottom-up method with or

without centroid shrinking, we can see that the increase in the

quality gets flattened when the number of clusters increases.

Next, we ran all the mentioned clustering methods for the entire

CGH dataset (i.e. 5 020 samples). Figure 5 shows the NMI for Sim.

The results confirm the experiments in Figure 4a: (1) Top-down

clustering produces the best clusters. (2) The centroid shrinking

strategy does not have a significant impact. (3) Most of the results

on the entire dataset remain within the error intervals. The best

clustering quality was obtained when 64 clusters were created.

The average cluster size, i.e. number of samples in the cluster, is

78.44 and the SD is 51.03.

In our experiments on the same dataset using Rand Index, we

obtained slightly better results with top-down method. The two

described internal measures (compactness and separation) support

this conclusion that top-down clustering is the better choice (results

omitted owing space limitation).
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Fig. 4. Cluster qualities after applying different clustering methods with Sim

measure using (a) NMI and (b) F1-measure respectively as the quality mea-

sure. The fifth and the ninety-fifth percentile of the results are reported as the

error bar.
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Fig. 5. Cluster qualities of applying different clustering methods with

Sim measure over the entire dataset. The cluster qualities are evaluated

using NMI.
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Performance issues of top-down clustering: In Section 2.2.3, we

discussed two types of top-down methods, top-down method with

global refinement and top-down method with local refinement.

Here, we evaluate the quality and running time of these two stra-

tegies. We restrict the similarity measure to Sim as it gives the

highest quality. Using each strategy, we created 2, 4, 8, 16, 32,

and 64 clusters for each of the 19 cancer types. We compute the

average internal measure based on compactness of all the cancer

types as the quality of the clusters. We also compute the average

time to create clusters as the running time.

Table 2 shows the average quality and running time of two dif-

ferent top-down methods. The first part of the table indicates that

local refinement gives slightly worse qualities than the global refine-

ment. However, the quality difference is negligible. The quality of

the clusters increases as the number of clusters increases up to 32.

The quality starts to plateau or drop after this point. This indicates

that, in general, as the number of clusters increases, the clusters are

more compact and the intra-similarity of clusters increases. How-

ever, when the number of clusters becomes too large compared with

size of dataset, some closely similar samples will be forced into

different clusters, which, instead, reduce the intra-similarity of clus-

ters. The second part of the table indicates that the average running

time for global refinement is much higher than local refinement.

This observation is consistent with our analysis of time complexity

in Section 2.2.3. Considering that local refinement gives only

slightly worse qualities but runs much faster than global refinement,

we use the former method throughout this paper.

4 RELATED WORK

The molecular cytogenetic techniques of CGH (Kallioniemi et al.,
1992) and array- or matrix-CGH (Solinas-Toldo; 1997 Pinkel et al.,
1998; Pollack et al., 1996) have previously been used to describe

genomic aberration hot spots in cancer entities (Gray et al., 1994;
Bentz et al., 1996), for the delineation of disease subsets according

to their cytogenetic aberration patterns (Mattfeldt et al., 2001; Joos
et al., 2002) and for the construction of genomic aberration trees

from chromosomal imbalance data (Desper et al., 1999).
In contrast toMetaphase analysis, CGH techniques are not limited

to dividing tumor cells which frequently do not represent the pre-

dominant clone in the original tumor. Also, CGH is not hampered by

incomplete identification of chromosomal segments, which for

Metaphase analysis only recently has been addressed by SKY (Spec-

tral Karyotyping) (Veldman et al., 1997) and MFISH (Multiplex

Fluorescent In Situ Hybridization) (Speicher et al., 1996) tech-

niques. According to our own survey, chromosomal and array

CGH now account for the majority of published analyses in cancer

cytogenetics.

With > 12 000 cases (Baudis, 2006), the largest resource for

published CGH data can be found in the Progenetix database,

developed by one of the authors (Baudis and Cleary, 2001)

(http://www.progenetix.net). Recently, the Progenetix database

and the software tools developed for the project have shown its

usefulness for the delineation of genomic aberration patterns with

clear prognostic relevance in neuroblastomas (Vandesompele et al.,
2005) and for producing tumor type specific imbalance maps (Mao

et al., 2005, 2006).
Different strategies for structural analysis of CGH data have been

applied previously. Most of these analysis were aimed at the

description of pseudo-temporal relationships of cytogenetic events

(Desper et al., 1999; Hoglund et al., 2005) or at the correlation of

disease subsets with clinical parameters (Mattfeldt et al., 2001;
Vandesompele et al., 2005). Other CGH related data analysis

have been aimed at the the spatial coherence of genomic segments

with different copy number levels. Picard et al. used a segmentation

methods with a Gaussian based model to detect homogeneous

regions that share the same relative copy number on average (Picard

et al., 2005b). Further, he proposed a segmentation-clustering

approach combining with a Gaussian mixture model to assess

the biological status to the detected segments (Picard et al.,
2005a). Fridlyand et al. used an unsupervised hidden Markov

models approach to partition the genomic intervals into regions

with the same underlying copy number (Fridlyand et al., 2004).
Pei et al. built a hierarchical clustering tree based on similarity

between clusters (Wang et al., 2005), and then select the interesting
clusters at a certain level. Willenbrock et al. made a comparison

study on three popular segmentation methods and demonstrated that

smoothed (segmented) CGH data are adapted to downstream

analyses such as classification (Willenbrock and Fridlyand,

2005). Rouveirol et al. proposed a method to identify regions

with recurrent genomic alterations from more than a few tens of

profiles (Rouveirol et al., 2006). However, so far there has been very
limited study on interval-based structural analysis of large (> 1000),

heterogeneous sets of smoothed CGH data.

5 CONCLUSION

We considered the problem of clustering CGH data of a population

of cancer patient samples. We developed a systematic way of pla-

cing patients with same cancer types in the same cluster based on

their CGH patterns. We focused on distance-based clustering stra-

tegies. We developed three pairwise distance/similarity measures,

namely raw, cosine and sim. Raw measure disregards correlation

between contiguous genomic intervals. It compares the aberrations

in each genomic interval separately. The remaining measures

assume that consecutive genomic intervals may be correlated,

Cosine maps pairs of CGH samples into vectors in a high-

dimensional space and measures the angle between them. Sim

measure counts the number of independent common aberrations.

We employed our distance/similarity measures on three well-known

clustering algorithms, bottom-up, top-down and k-means with and

without centroid shrinking.

In our experiments using classified disease entities from the

Progenetix database, the highest clustering quality was achieved

using Sim as the similarity measure and top-down as the clustering

Table 2. Comparison of average quality (i.e. internal measure IC) and run-

ning time of top-downmethodswith global and local refinement. (Here L and

G indicate local and global refinement respectively.)

Number of clusters

2 4 8 16 32 64

Quality L 703 797 892 927 947 904

G 730 839 936 983 1017 971

Time [Sec] L 0.1 0.3 1.7 3.1 6.5 9.8

G 3.4 22.9 129.7 329.4 1151.2 2018.2

Distance-based clustering for CGH data
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strategy. This observation fits with the theory that contiguous runs

of genomic aberrations arise around a point-like target (e.g. onco-

gene), and that consecutive genomic intervals can not be considered

as independent of each other.

Conflict of Interest: none declared.
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