progenetix.net: storage and visualization of genomic aberration data in human malignancies michael baudis, md

Over the last decade, techniques for the genome wide scanning for genomic imbalances in malignant neoplasia have been developed, e.g. Comparative Genomic Hybridization (CGH).

Currently, no comprehensive online source for CGH data with a standardized format suitable for data mining procedures has been made available for public access. Such a data repository could be valuable in identifying genetic aberration patterns with linkage to specific disease entities, and provide additional information for validating data from large scale expression array experiments.

A case and band specific aberration matrix was selected as most suitable format for the mining of CGH data. The [progenetix.net] data repository was developed to provide the according data to the research community for a growing number of human malignancies.

In the current implementation, two main purposes are being served. First, access to the band specific pattern of chromosomal imbalances allows the instantaneous identification of genomic "hotspots". Second, the band specific aberration matrices can be included in data mining efforts. As an example, the clustering off all informative cases from the current (September 2001) dataset is shown here (online source under www.progenetix.net/bcats/clustered.png).

Data selection

PubMed is searched for publications applying CGH to the analysis of malignant tumors. Articles are selected according to their online availability and the description of genomic imbalances on a per case basis.

Transformation of input data

Chromosomal aberration data is transformed via customized parsing commands to a common format adherent to ISCN 1995 recommendations. In some cases, aberration data was transcribed from graphical representations or provided by the authors.

Data storage

Currently, the primary data is stored in a dedicated "off-line" database. Besides case identifier and ISCN adapted chromosomal imbalance data, tumor classification and source information including the PubMed identifier is recorded. Disease entities are reclassified to ICD-O-3 codes.

Text parsing and generation of aberration matrix

For the generation of the case and band specific aberration matrix, a dedicated text pattern comparison model was developed using Perl. Briefly, for each chromosomal band, the aberration field of each case is searched for a variety of patterns containing aberration information applying to that band. A matrix with currently 324 band resolution is generated, annotating chromosomal gains with "1" and losses with "-1"; localized highlevel gains are designated "2".

Website generation

For graphical representation of chromosomal imbalances, HTML pages containing different views of the underlying aberration matrices are generated using Perl. Graphics are implemented using HTML syntax. Besides band specific, whole genomic overviews, chromosome specific pages with links to all involved cases are generated for each ICD-O-3 entity as well as for each registered project. Additionally, those representations are available for several subsets combining related data (e.g. all lymphoid neoplasias, breast carcinoma cases). For each of the groups, the according aberration matrix is linked for download.

Hierarchical clustering of band specific chromosomal imbalances from 999 human neoplasias, contained in the [progenetix.net] collection. Cases without aberrations were excluded.