
Oncology and Informatics – Review

Oncology

Mountains and Chasms: Surveying the 
Oncogenomic Publication Landscape

Paula Carrio-Cordo    Michael Baudis    

Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland

Received: June 25, 2018
Accepted: July 25, 2018
Published online: October 26, 2018

Prof. Dr. Michael Baudis
Institute of Molecular Life Sciences, University of Zurich
Winterthurerstrasse 190
CH–8057 Zurich (Switzerland)
E-Mail m @ baud.is

© 2018 S. Karger AG, Basel

E-Mail karger@karger.com
www.karger.com/ocl

DOI: 10.1159/000493192

Keywords
Cancer genomics · Copy number alteration · Comparative 
genomic hybridization · Bioinformatics

Abstract
Cancers arise from the accumulation of somatic genome 
mutations, with varying contributions of intrinsic (i.e., genet-
ic predisposition) and extrinsic (i.e., environmental) factors. 
For the understanding of malignant clones, precise informa-
tion about their genomic composition has to be correlated 
with morphological, clinical, and individual features in the 
context of the available medical knowledge. Rapid improve-
ments in molecular profiling techniques, the accumulation 
of a large amount of data in genomic alterations in human 
malignancies, and the expansion of bioinformatic tools and 
methodologies have facilitated the understanding of the 
molecular changes during oncogenesis, and their correla-
tion with clinicopathological phenotypes. Far beyond a lim-
ited set of “driver” genes, oncogenomic profiling has identi-
fied a large variety of somatic mutations, and whole-genome 
sequencing studies of healthy individuals have improved 
the knowledge of heritable genome variation. Nevertheless, 
the main challenges arise from the skewed representation of 
individuals from varying population backgrounds in bio-

medical studies, and also through the limited extent in which 
some cancer entities are represented in the scientific litera-
ture. Content analyses of oncogenomic publications could 
provide guidance for the planning and support of future 
studies aiming at filling prominent knowledge gaps.

© 2018 S. Karger AG, Basel

Introduction

Cancers as Genomic Diseases
Cancers are based on the accumulation of genomic 

mutations, leading to the transformation of somatic cells 
into a malignant clone expressing the characteristic “Hall-
marks of Cancer” [1]. Different types of cancers show 
varying types of overall mutation patterns, which may al-
low identification of molecular subsets beyond tradition-
al diagnostic classifications [2, 3] and can be utilized for 
prognostic risk assessment and clinical decision making 
[4, 3].

While the majority of mutations emerge during an in-
dividual’s lifetime (“somatic” mutations), the risk for de-
veloping a malignant disease can be influenced by inher-
ited (“germline”) genome variations. Some mutations 
predisposing to specific malignancies have been identi-
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fied due to high penetrance and apparent familial inheri-
tance pattern [5–7]. However, the interaction of multiple 
genetic variants with lifetime cancer risk is still poorly 
understood, reflecting part of the “missing heritability” 
[8] of complex diseases.

Germline variants may correlate with the population 
background of individuals and be associated – by approx-
imation – with their geographical origin. Although socio-
economic factors differ in their geographic distribution 
and contribute to disease incidence and mortality in gen-
eral, the strong association of several inherited single nu-
cleotide variations with specific cancers motivates a more 
thorough search for a heritable influence on somatic vari-
ation patterns. Differences in the inherited genomic back-
ground may be correlated with the amount and types of 
acquired mutations during cancer development [9, 10], 
which has implications for understanding the molecular 
behavior of the tumors as well as on the treatment options 
for patients [11, 12].

Oncogenomic Screening Techniques
The possibility of alterations of a “heritable agent” in 

the etiology of cancer had been proposed long before the 
description of DNA as the molecule of genetic inheri-
tance, but was met with skepticism in its early days, as 
expressed in this review of Theodor Boveri’s work from 
1914 [13]):

... as well as for its impracticability, it is probable that the hy-
pothesis will not be favorably received by the medical profession.

One of the reasons for early skepticism of chromosom-
al changes as the basis for cancer development was the 
impracticability of studying them in humans. However, 
the development of chromosomal preparation and stain-
ing techniques led to an interest in studying the chromo-
somal composition of neoplastic cells, starting with he-
matologic malignancies [14, 15] as well as solid tumors 
[16]. Over the next decades, the field of cancer cytogenet-
ics produced a huge number of studies about chromo-
somal abnormalities in cancer; currently, the “Mitelman 
Database of Chromosome Aberrations and Gene Fusions 
in Cancer” reports 68,379 individual cases [17].

While cytogenetic banding can describe “phenotypic” 
chromosomal observations without analysis of the in-
volved sequence alterations, these observations could be 
associated with mapped positions of tumor-associated 
genes [18] or guide their identification [19]. Major prog-
ress came from the use of sequence-specific probes using 
in situ hybridization [20, 21], especially after the intro-
duction of fluorescence in situ hybridization [22, 23] and 

the delineation of chromosomal fragments in cancer 
karyotypes using chromosomal “painting” techniques 
[24, 25]. However, analysis by those technologies re-
quired access to karyotypes from dividing cancer cells or 
was limited to specific measurements, thereby limiting 
the utility for the discovery of unknown aberrations.

The first whole-genome molecular cytogenetic tech-
nology not requiring access to living tumor cells was com-
parative genomic hybridization (CGH [26, 27]), a reverse 
in situ hybridization technique in which labeled whole-
genomic tumor DNA is hybridized to a matrix of normal 
human metaphase chromosomes. CGH represented a 
semi-quantitative analysis of DNA along the whole ge-
nome and importantly allowed the use of DNA extracted 
from source materials such as frozen and archival tissue 
[28]. While the spatial resolution of chromosomal CGH 
was especially limited for genomic deletions [29], the 
analysis of genomic imbalances in neoplasias not ame-
nable to in vitro culture detected unexpected types of ge-
nomic alterations [30, 31] and disease-related patterns 
[32–36].

A major advancement for hybridization-based ge-
nomic profiling was the replacement of the hybridization 
substrate by thousands of defined DNA probes spotted 
on glass slides. Such “array” or “matrix” CGH experi-
ments (aCGH [33, 36]) permitted the direct assignment 
of altered sequences. Furthermore, oligonucleotide-based 
“SNP” arrays, developed for genetic polymorphism pro-
filing [37], were shown to be suitable for copy number 
profiling [38] and became the predominant genome pro-
filing technology in cancer analysis.

In the last decade, “next generation” sequencing tech-
nologies (NGS) have been applied to genome screening 
experiments in cancer, both for the analysis of whole ge-
nomes (whole-genome sequencing, WGS) as well as for 
whole-exome sequencing (WES) [39]. In addition to de-
tecting single nucleotide variations and other spatially 
limited sequence variants, the read data from NGS analy-
ses can be used to derive structural variation data, such as 
regional copy number imbalances [40, 41].

Bioinformatics in Genome Screening
Since the rapidly accumulating biological data is both 

complex and extensive, bioinformatic procedures are re-
quired as enabling technologies for data processing, ware-
housing, and annotation as well as the biological interpre-
tation of observations and measurements. Over the last 
decades, specialized areas of bioinformatics have emerged 
with a focus on, for instance, image analysis, data visual-
ization, systems biology, text mining, and “multiomics,” 
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with major repercussions for the biomedical community 
and the field of personalized health.

With a focus on genomic profiling data (Table 1), dif-
ferent bioinformatic approaches are applied depending 
on the genomic screening technique and target of the 
analysis. Whereas hybridization-based technologies have 
important dependencies on image analysis and signal 
segmentation technologies, a core technique in the pro-
cessing of NGS data is in the assembly of nucleic acid and 
protein sequences [42] and mapping of those sequences 
to reference genomes using a variety of sequence similar-
ity detection algorithms (e.g., Smith-Water man, BLAST, 
Hidden Markov Models). Further methods, tools, and re-
positories are continuously being created for the identifi-
cation and functional assessment of sequence variants.

Although great advances in cancer profiling data anal-
ysis have been driven by bioinformatics, a main challenge 
remains in the integration of data from different sources 
and technologies. Unfortunately, an extraordinary share 
of bioinformatic efforts has to be diverted towards data 
integration, i.e., the mining and harmonization of mo-
lecular and metadata, from a vast number of different file 
formats, data interfaces, and annotation styles. 

Published Cancer Genome Screening Studies
In the time since the first application of CGH to screen 

cancer samples for genomic copy number imbalances, a 
large number of oncogenomic studies have been pub-
lished, both in case reports as well as in large studies cov-

ering more than 1,000 samples [43, 44]. While the studies 
considered here were using molecular-cytogenetic and 
genome sequencing based on different technologies and 
varying sensitivity and spatial resolution, they all provide 
a whole-genome read-out for genomic copy number im-
balances without selectively targeting specific genome el-
ements.

For our discussions considering the “Oncogenomic 
Publication Landscape” we will focus on studies of whole-
genome, molecular screening techniques using tumor 
DNA as starting material, including chromosomal (cCGH) 
and array CGH (aCGH, including single-color oligonu-
cleotide and SNP arrays), as well as WES and WGS. We 
will use data from existing repositories to highlight biases 
in published cancer genome screening data, both regard-
ing the representation of disease entities as well as the geo-
graphic provenance. For this discussion we will consider 
the different technologies as “equivalent by intent” – i.e., 
whole-genome cancer variation profiling – and not with 
respect to differences in the detection sensitivity or added 
data qualities beyond structural variation profiling.

Most of the following observations are based on data 
collected for the Progenetix (progenetix.org [45]) and ar-
rayMap (arraymap.org [46]) resources. Although these 
curated data repositories cannot provide an exhaustive 
image of all research in the area, the massive amount of 
data accumulated there can deliver a representative snap-
shot of the field, to encourage discussions about study 
targets and data trajectories.

Table 1. Characteristics of different genomic screening techniques

1st application 
report

cCGH, 
1992

Genomic arrays, 
1997

WES, 
2008

WGS, 
2008

Genomic 
resolution

Chromosomal bands = 
few megabases

Mostly in the 100-kb range Single bases (2% of 
the genome)

Single bases

Target 
identification

Surrogate (position) “Semidirect” (segmentation 
spanning probes)

Direct quantitative 
and qualitative

Direct quantitative 
and qualitative

Balanced 
structural

No No (exceptions) Depending on position Yes

Available 
data

>20,000 cases through 
Progenetix

Raw (e.g., GEO, 
arrayExpress) and annotated 
arrayMap data

Limited (controlled, 
e.g. TCGA, ICGC)

Limited (controlled, 
e.g., PCAWG)

Predominant 
data format

ISCN Raw; depends on 
bioinformatics

VCF files VCF files

Bioinformatics Image segmentation, 
densitometry

Value segmentation, 
background subtraction

Alignment, base 
quality recalibration, 
variant calling

Alignment, base 
quality recalibration, 
variant calling
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The Progenetix website was established in 2001 [45] to 
collect and represent data from published CGH studies for 
comparative meta-analyses of genomic copy number pro-
files. In identifying data suitable for the resource, over the 
years a main feature became the general tracking of pub-
lications about cancer genome screening studies, inde-
pendent of the accessibility of the raw data itself. Data at-
tributes for each publication registered in Progenetix and 
relevant for the discussions are, for example, the number 
of cancer samples per technological category (cCGH, 
aCGH, WES, WGS), the geographic provenance of the 
samples (approximated by the location of the study’s cor-
responding author), as well as the “cancer type” reported. 
Where available, sample-specific copy number imbalance 
data is collected and represented in various formats [47].

In contrast to the Progenetix resource, the arrayMap 
cancer genome repository represents genome profiling 
data through mining and re-processing of genomic array 
data, currently including more than 260 platform types 
with the minimum requirement of whole-genome probe 
level representation. As in the case for Progenetix, main 

features are data curation and annotation in standardized 
formats, as well as the graphical representation of genome 
variation data [46].

While the main reason for individual genome screen-
ing analyses is the discovery of genome variants without 
a priori target selection, an added benefit lies in the pos-
sibility to assemble large datasets for meta-analyses of 
cancer-related genome variant frequencies and patterns. 
Such datasets enable comparative studies of driver  
gene involvement (e.g., MYCN, BCL2, TP53, HER2, 
CDKN2A/B, or BRAF) across different cancer types. 
Also, since many potential gene targets in genomic re-
gions with recurring copy number alterations across can-
cer types still remain to be identified, events such as the 
recurrence of focal genome alterations have been argued 
to represent consequences of strong selection on limited 
structural rearrangement events during cancer evolution 
[48, 49] and can be used to pinpoint candidate oncogene 
involvement based on statistical analyses [50].

The integration of cancer genomic data across studies 
can help to define the genetic landscape of different can-
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Fig. 1. Publication statistics for cancer genome screening studies. The graphic shows our assessment of publica-
tions reporting whole-genome screening of cancer samples, using molecular detection methods (chromosomal 
CGH, genomic array technologies, whole-exome and whole-genome sequencing). For the years 1993–2018, we 
found 3,078 publications reporting 150,000 individual samples in single series from 1 to more than 1,000 samples. 
The y axis and size of the dots correspond to the sample number; the color codes indicate the technology used.
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cer types. As an example, in a study combining genomic 
data of breast and colorectal cancers, 189 genes were 
identified to contribute to neoplastic processes. These 
genes were previously unknown to be modified in can-
cers but they reveal certain cancer-specific patterns by 
integrative analysis [51]. This kind of integrative ap-
proach is beneficial not only to find novel gene targets, 
but also to discover the general patterns across various 
cancer types.

As a resource for the identification of existing reports 
for specific cancer types as well as for the assembly of 
meta-analysis studies, the Progenetix resource currently 
provides metadata on more than 3,000 articles published 

between 1993 and 2018, representing 36,496, 102,009, 
7,023, and 3,343 individual cancer samples analyzed by 
cCGH, aCGH, WES, and WGS, respectively. Figure 1 dis-
plays the temporal distribution of these publications, with 
indications for the number of presented samples and used 
technologies. While these numbers have a certain tempo-
ral lag – both due to delay between data production and 
publication and delays in identification and annotation of 
the respective articles – one can observe the general trends 
to move towards newer technologies and higher sample 
numbers per published study, with NGS-based studies in-
creasingly replacing hybridization-based analyses (so far 
with lower, but increasing, numbers per study).
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Fig. 2. Distribution of the 50 most studied cancer times based on entities represented in arrayMap by ICD-O-3 
topography (i.e., organ site)
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Representation of Diagnostic Classes
While the overview of the oncogenomic publication 

space gives some indication of the overall amount of data 
being produced in research studies, these estimates do 
not provide information about data produced for differ-
ent cancer types. For an approximation of the availability 
of diagnosis-matched genome profiles, one can utilize re-
sources which provide per sample metadata, with annota-
tions mapped to uniform classification systems. Such re-
sources can consist of collaborative projects, such as The 
Cancer Genome Analysis project (TCGA [52]) or the In-
ternational Cancer Genome Consortium (ICGC [53]), 
where many individual research groups contribute mo-
lecular profiling and metadata of different tumor types in 
a coordinated fashion, or in curated data resources.

For our arrayMap resource (arraymap.org [46]) we uti-
lize different primary data sources such as the EBI array-
Express [54], publication supplements, and user-provided 
data. However, arrayMap data chiefly reflects the content 

of the NCBI GEO resource [55] for cancer datasets from 
suitable genomic array platforms. To date, 267 different 
platforms and 901 experimental series are available for 
copy number alteration arrays. As result of the continuous 
data integration performed through a semi-automated 
data processing and annotation pipeline [46], at this time 
a total of 250 morphologies from 94 distinct topographies 
have been annotated according to ICD-O-3 [56].

As seen in Figure 2, the vast majority of the samples 
from arrayMap are from hematologic neoplasias, breast 
cancer, brain tumors, lung and bronchus carcinomas, 
and colorectal cancers with a representation of 25 (20 + 5 
for other NHL), 16, 11, 8, and 5%, respectively. When in-
cluding the year of publication, we observe that the rela-
tive contributions are approximately maintained within 
the 10-year period (Fig. 3). While the granularity of diag-
nostic assignments may differ between studies, it is strik-
ing that more than half of the data is derived from 4% of 
94 registered cancer sites.
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A selection bias regarding cancer types is also apparent 
when comparing study representation (arrayMap and 
TCGA) with the respective incidences. While breast can-
cer cases represent 15.3% of all cancers [57], in arrayMap 
15.8% (9.70% TCGA) of samples were identified as rep-
resenting a type of breast carcinoma. However, prostate 
cancer accounting for 9% of all new cases is underrepre-
sented with only 2.21% (4.41%) of study samples. Bladder 
cancer, which accounts for 4.7% of all new cancer cases, 
has 1.16% (3.66%) of the sample representation. Thyroid 
cancer has 3.1% incidence with 0.16% (4.48%) of samples, 
and larynx carcinoma has 0.8% incidence with 0.05% of 
samples (1.11% TCGA).

Moreover, whereas some of the most studied cancers 
have low mortality rates such as breast cancer with almost 

90% survival after 5 years, special mention should be 
made of those entities underrepresented and with high 
mortality. For instance, pancreas cancers have 0.75% of 
samples in arrayMap (1.63% TCGA) but 3.2% of all new 
cases have an 8.5% 5-year survival rate. While esophagus 
cancer is proportionally well represented (1.70/1.63% of 
samples for 1% of all new cancers), it remains poorly un-
derstood with a 5-year survival rate still at 19.2%.

Overall, cancer genome publications reflect the pre-
ferred analysis of frequent cancers with some apparent 
biases, while being limited in the representation of rare 
tumor types. Multiple factors could explain biases in can-
cer type selections: lack of general interest and major 
problematic assembly of biosamples for rare cancer types, 
allocation of research funding for specific cancer types 

Table 2. Numbers of publications and associated samples in the Progenetix article registry, separated for geographic regions
a 1st application report

  Chromosomal CGH, 
n = 199,226

Genomic, arrays, 
n = 199,733

WES, 
n = 200,834

WGS, 
n = 200,835

Resolution Chromosomal bands = 
few megabases

Mostly in the 100-kb 
range

Single bases (2% of 
the genome)

Single bases

Target 
identification

Surrogate (position) “Semidirect” (segmen-
tation spanning probes)

Direct quantitative 
and qualitative

Direct quantitative and qualitative

Balanced 
structural

No No (exceptions) Depending on 
position

Yes

Available 
data

>34,000 cases through 
Progenetix

Raw (e.g., GEO, 
arrayExpress) and 
annotated arrayMap data

Limited (controlled, 
e.g., TCGA, ICGC)

Limited (controlled, e.g., PCAWG)

Predominant 
data format

ISCN = static Raw; depends on bio-
informatics

VCF files VCF files

Bioinformatics Image segmentation, 
densitometry

Value segmentation, 
background subtraction

Alignment, base 
quality recalibration, 
variant calling

Alignment, base quality recalibration, 
variant calling

b Publications

Samples per technique (Sub-) 
continentcCGH aCGH WES WGS

3 58 33 0 0 Africa
46 225 1,444 303 288 Australia

465 6,132 10,736 1,534 579 East Asia
28 564 1,324 45 0 South Asia
31 720 209 0 0 Western Asia

1,619 24,070 47,251 1,912 1,465 Europe
833 4,680 39,352 2,888 936 North America

29 208 230 2 1 South America
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(e.g., breast cancer) due to public perception and advo-
cacy, lack of availability of tissue samples due to technical 
difficulties in sample extraction and processing, or ethical 
and legal implications regarding patient privacy in sam-
ple sharing for genomic analysis [58–60]. To relieve these 
disparities, global and efficient actions should be taken. 
While the current tendency is indeed to study cancer 
types with high incidences, the study of rare entities could 
dramatically increase our knowledge of cancer biology.

Geographies of Published Studies
A number of studies remark on disparities in cancer 

incidence, prevalence, and mortality related to ethnicity 
and geographic origin [61, 62]. Two general classes of fac-
tors have been found to contribute to these disparities: (a) 
environmental factors through different types and levels 
of exposure related to local or regional geographical ori-
gin, and (b) population-specific variation in genomic 
variants with influence of heritable contributions on can-
cer development.

Although, many studies relate the influence of geo-
graphic pattern incidences with environmental factors 
such as pollution levels, intensity of UV radiation, or ex-
posure to infectious agents [61], the contribution of pop-
ulation-specific biases in cancer promoting genome vari-
ants is less well defined. Some relevant studies in the area 
have shown the BRCA1 gene as a population-specific bias 
in some homogeneous groups compared to outbred ref-
erence populations [63]. In the assembly of a meta-re-
source for oncogenomic publications, the contact infor-
mation of the corresponding authors represents an im-
portant piece of information, e.g., for facilitating the 
contacting of study authors by the resource’s users, for 
follow-up questions, or access to detailed study informa-
tion or source data. However, this information can also 
be used as proxy to provide quantitative representation of 
the study content with relation to geographic provenance, 
leading to some interesting observations.

The geographic origin mapping of more than 3,000 
publications represented in the Progenetix article registry 
showed large biases regarding the provenance of the pub-
lished data (Table 2). While the overall preponderance of 
studies from Europe (1,619) and North America (833) 
could be expected, the near complete lack of cancer ge-
nome screening studies from the African continent was 
unexpected.

Since cancer development can be influenced by popu-
lation-related inherited genome variants as well as extrin-
sic factors related to local environmental exposure and 
sociocultural practices, it is of paramount importance to 

include geolocation metadata in the assessment of mo-
lecular profiling. However, the real impact of factors cor-
related with geographic provenance can only be assessed 
with the availability of sufficient, representative data for 
a large range of geographies, ethnicities, and environ-
ments.

Focusing on the geographic location of the studies, the 
tendency is, as expected, for developed countries to pro-
vide the majority of oncogenomic data (Fig. 4). Most of 
the published studies are reported from Europe, the USA, 
China, Japan, Australia, and the Korean Republic. In con-
trast, only very few studies have been reported from Cen-
tral and South Asia as well as South America. However, 
most striking is the near complete absence of cancer ge-
nome studies from the African continent in the accessible 
literature. One can assume that these geographic biases 
reflect major difficulties in the establishment of technol-
ogy-driven research in underdeveloped countries – from 
lack of training of scientists to infrastructure problems for 
biosample extraction, expense and availability of reagents 
and technical equipment, as well as computing infra-
structure for bioinformatic processing [64].

A more uniform map of the number of genomic stud-
ies across the world is of further importance for clinical 
trials, where attention on the genetic variation across eth-
nic groups could improve novel therapies and reduce 
cancer disparities.

GA4GH to the Rescue
While the need for more and diverse studies of cancer 

genome mutation profiles and their relation to the under-
lying personal genomes is increasingly being realized, a 
major obstacle in utilizing the emerging data lies in the 
high degree of fragmentation and “siloing” of the gener-
ated data. Genomics and associated metadata are fre-
quently created as part of research studies with study-spe-
cific consent [65] and access restricted to original study 
collaborators. If mechanisms for outside researchers are 
in place, they usually require submission of specific proj-
ect proposals and review through a data access committee 
and agreement to specific usage conditions. If data then 
can be accessed, it is in a variety of genome and metadata 
formats which usually have to be normalized to common 
encodings.

The core mission of the Global Alliance for Genomics 
and Health initiative (GA4GH [66]) is to “... enable ge-
nomic data sharing for the benefit of human health”. Its 
members address this goal through the improvement of 
global standards and the creation of tools to securely 
share genomic data across geographic or institutional 
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boundaries. Formally established in 2014 and with an in-
creasing participation of currently 499 organizational 
members from 44 countries, the GA4GH has started to 
shape the public discourse about the benefits of genome-
driven research for human health applications, and start-
ed to provide guidelines [67], standards, and tool kits to 
enable secure and ethically responsible data sharing. 
These activities are based on the work of different “work 
streams”, which interact with existing “driver projects” in 
the iterative development, testing, and implementation of 
protocols, standards, and tool kits. The driver projects 
themselves – such as the “Beacon” [68] project or the 
“BRCA exchange” [69] – address particular scientific, 
technical, regulatory, or security-related aspects of feder-
ated access to human genomes and related metadata. 
However, while the development of protocols, tools, and 
guidelines for the effective sharing of genome-related 
data is a prerequisite for widening the scope and statistical 
significance of studies in biomedical genomics, by them-
selves these efforts alone cannot solve the skewed genera-
tion of genome screening data with respect to disease rep-
resentation and REA (race, ethnicity, and ancestry) prov-
enance. Additionally, having suitable protocols and tools 
at hand does not guarantee their implementation and use 

by the providers of the many institutional or national re-
source providers. These problems can only be addressed 
in an iterative process, involving coordinative work by 
organizations such as GA4GH in interaction with nation-
al and international policy makers and funders of scien-
tific projects and research infrastructures.

Conclusions

Continuous efforts into the understanding of tumor 
biology have led to an increasing number of coordinated 
international projects generating oncogenomic data. This 
progress has been made possible by the development of 
genome screening techniques, supported through the 
rapid advancement in computational hardware and bio-
informatic tools. Nowadays, the tight integration of bio-
informatics can be considered essential not only for meta-
analyses and statistical studies, but also as a necessary el-
ement in the execution of all types of molecular analyses 
and data management pipelines.

However, the ability to use text mining and other bio-
informatic tools to create large surveys of existing ge-
nome studies now allows us to observe biases in the data 

Fig. 4. The map displays the geographic distribution (by corresponding author) of the 102,225 genomic arrays, 
36,747 chromosomal CGH, and 7,212 whole-genome/exome-based cancer genome datasets. The numbers are 
derived from the 3,103 publications registered in the Progenetix database.
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being reported, both with respect to the representation of 
tumor entities as well as in the general lack of data from 
large fractions of the world’s populations. Impacts of 
these biases can be suspected in the missing opportunities 
for insights into particular oncogenetic mechanisms in 
rare cancer types, and the failure to fulfil the promise of 
“Precision Medicine” to those patients.

The other type of bias discussed here is the highly lim-
ited representation of many human populations – par-
ticularly from Africa – in publications reporting data 
from cancer genome screening analyses. The resulting 
lack of ethnic diversity will still be a barrier in trying to 
elucidate molecular events related to specific population 
backgrounds, thereby possibly missing out on specific 
therapeutic targets. These biases are not only limited to 
cancer, with recent data showing that more that 50% of 
all reported genome variants in the Genome Aggregation 
Database (gnomAD) are based on European ancestry 
[70].

Besides the well-known impact of major socioeconom-
ic factors, efforts towards understanding disparities in 
global cancer incidences and prognostic trajectories 
should also be directed with the characterization of differ-
ences in genetic variation patterns – both inherited poly-
morphisms and somatic variants in cancer genomes – for 
large numbers of patients from a variety of population 
backgrounds. Moreover, researchers should increasingly 
direct their attention towards rare cancer entities from 
which the knowledge would dramatically increase in ben-
efit of personalized medicine. Here, one can argue that the 

limited number of cancer types studied and the low diver-
sity of targeted populations should be addressed through 
the allocation of financial resources and support of inter-
national collaborative efforts.

One important aspect of a truly “global” understand-
ing of every aspect of the impact of inherited and somat-
ic variations on cancer biologies, clinical prognostica-
tions, and targeted interventions will be to facilitate data 
access beyond the current localized data silos and indi-
vidual publications with, at best, highly fragmented but 
frequently nonexisting access to genomic and associated 
metadata. Here, the Global Alliance for Genomics and 
Health provides a leading effort towards better access to 
health-related data, beyond individual studies and local-
ized repositories, towards a global network of interacting 
standards and resources.
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