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A B S T R A C T

Background: Copy number variations (CNV) are regional deviations from the
normal autosomal bi-allelic DNA content. While germline CNVs are a major contributor to genomic syndromes and inherited diseases, the majority of cancers
accumulate extensive “somatic” CNV (sCNV or CNA) during the process of oncogenetic transformation and progression. While specific sCNV have closely been
associated with tumorigenesis, intriguingly many neoplasias exhibit recurrent sCNV patterns beyond the involvement of a few cancer driver genes. Currently, CNV
profiles of tumor samples are generated using genomic micro-arrays or high-throughput DNA sequencing. Regardless of the underlying technology, genomic copy
number data is derived from the relative assessment and integration of multiple signals, with the data generation process being prone to contamination from several
sources. Estimated copy number values have no absolute or strictly linear correlation to their corresponding DNA levels, and the extent of deviation differs between
sample profiles, which poses a great challenge for data integration and comparison in large scale genome analysis.
Results: In this study, we present a novel method named “Minimum Error Calibration and Normalization for Copy Numbers Analysis” (Mecan4CNA). It only requires
CNV segmentation files as input, is platform independent, and has a high performance with limited hardware requirements. For a given multi-sample copy number
dataset, Mecan4CNA can batch-normalize all samples to the corresponding true copy number levels of the main tumor clones. Experiments of Mecan4CNA on
simulated data showed an overall accuracy of 93% and 91% in determining the normal level and single copy alteration (i.e. duplication or loss of one allele),
respectively. Comparison of estimated normal levels and single copy alternations with existing methods and karyotyping data on the NCI-60 tumor cell line produced
coherent results. To estimate the method's impact on downstream analyses, we performed GISTIC analyses on the original and Mecan4CNA normalized data from the
Cancer Genome Atlas (TCGA) where the normalized data showed prominent improvements of both sensitivity and specificity in detecting focal regions.
Conclusions: Mecan4CNA provides an advanced method for CNA data normalization, especially in meta-analyses involving large profile numbers and heterogeneous
source data quality. With its informative output and visualization options, Mecan4CNA also can improve the interpretation of individual CNA profiles. Mecan4CNA is
freely available as a Python package and through its code repository on Github.

1. Introduction

Copy number aberrations (CNA1) represent the gain and loss of DNA
compared to the normal bi-allelic status, for genomic regions of varying
sizes. Somatic copy number aberrations are a typical hallmark of cancer
with complex and intrinsic connections to the development of many
malignant diseases [1,2]. The determination of CNA profiles is a core
element of cancer genome analyses in research projects and also used in
clinical practice for different types of cancer. While disease-related
mutational patterns and genes associated with CNAs have been deli-
neated in various cancer types [3], it is expected that rapid advances of

in genomic high-throughput technologies and the accumulation of
massive amounts of data from cancer studies will reveal more com-
prehensive patterns in the near future [4]. However, although CNA data
has become a principal element in cancer genome analysis, the reliable
processing and interpretation of such data still pose challenges due to
heterogeneous technologies, data formats and data quality.

For the last two decades, the predominant methods for the gen-
eration of genome-wide CNA profiles have been based on genomic
micro-array technologies [5–7]. More recently, high-throughput se-
quencing technologies have been co-opted to generate DNA copy
number profiles in rare disease diagnostics and cancer genome analyses

https://doi.org/10.1016/j.ygeno.2020.05.008
Received 20 February 2020; Received in revised form 5 May 2020; Accepted 6 May 2020

Abbreviations: CNV, Copy Number Variations; sCNV, Somatic Copy Number Variations; CNA, Copy Number Aberrations; Mecan4CNA, Minimum Error Calibration
and Normalization for Copy Numbers Analysis; SNP, Single Nucleotide Polymorphism

⁎ Corresponding author at: Institute of Molecular Life Sciences, University of Zurich, Switzerland.
E-mail address: mbaudis@imls.uzh.ch (M. Baudis).

1 Alternatively to “Copy Number Aberrations” (CNA) the term “Somatic Copy Number Variations” (sCNV) is being used in the literature. We prefer the CNA term
due to precedence and epistemic relation to the oncogenetic process.

Genomics 112 (2020) 3331–3341

Available online 13 May 2020
0888-7543/ © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/08887543
https://www.elsevier.com/locate/ygeno
https://doi.org/10.1016/j.ygeno.2020.05.008
https://doi.org/10.1016/j.ygeno.2020.05.008
mailto:mbaudis@imls.uzh.ch
https://doi.org/10.1016/j.ygeno.2020.05.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ygeno.2020.05.008&domain=pdf


[8–10]. Independent of technology or specific platform, CNA data often
suffers from signal deviations (Fig. 1), which can be attributed to three
main sources. The main component influencing the signal levels is the
varying clonal purity of the tumor sample. Ideally, a derived DNA copy
number should be an integer value representing the DNA (allele) count
at a given genome position, as it exists in the cells of a clonal tumor cell
population. In practice, a given tumor sample frequently represents a
mixture of normal cells (e.g. stroma), cells from the predominant ma-
lignant clone and cells from minor tumor clones (sub-clones) re-
presenting different branches in the malignant evolution process. While
stromal admixture leads to a uniform attenuation of the CNA signal,
sub-clonal components can result in regional and fractional divergences
from the copy number levels expected from a homogeneous tumor
sample. Additionally, CN values are derived from the relative mea-
surement of DNA content, with a possibly non-linear correlation be-
tween the true regional CN and the measured - intensity or count based
- signal. Also, systematic errors may accumulate in each experimental
step throughout the pipeline, e.g. in sample preparation, DNA labelling
or hybridization procedures. In theory, the sources of experimental
noise can be alleviated by performing additional experiments, in-
creasing the amount of source material used or the depth of sequencing,
or through fine tuning of experimental and analytical protocols. How-
ever, such efforts are negatively impacted by scarce or qualitatively
limited source material (e.g. archival tissue), associated costs (e.g. for
technical replicates or increased read depth) or analytical overhead.
Most importantly, experimental improvements cannot be pursued in
meta-analyses on pre-existing data, which possibly was derived from a
variety of sources.

Currently, no “Gold Standard” solution addresses the problem of
copy number calibration and the generation of integer CN counts, in a
consistent and universal manner. In primary research and clinical stu-
dies, the most common approach lies in a supervised assessment under
the potential inclusion of contextual information. This methodology can
work well for limited numbers of profiles with simple aberration pat-
terns; however, it is dependent on individual observer experience,
shows limited performance for highly complex CNA profiles and is in-
compatible with the consistent assessment of CNA profiles for meta-
analyses which potentially include tens of thousands of genome pro-
files.

To allow a basic comparison of CNA profiles from different ex-
periments, a widely used approach has been to apply median centering
of probe values or derived CNA segments. However, while this statis-
tical methodology is intuitive and can be easily implemented, it also has
been shown to struggle when processing complex CNA profiles [11,12].
In the last decade, several computational methods have been developed
to address the detection of tumor purity or actual DNA levels [11–19].
The ABSOLUTE method [11] uses allele specific copy number ratios and
pre-computed models to estimate purity and ploidy, and applies this
information to computes potential models of absolute copy numbers for
individual genome regions. BACOM [12] exploits allele specific copy

number signals with a Bayesian model to differentiate homozygous and
heterozygous deletions and to estimate normal cell fractions. AbsCN-seq
[19] uses a statistical method to infer purity, ploidy and absolute copy
number. These computational methods can provide a reliable estima-
tion of regional copy number levels, for samples with sufficient,
homogeneous data quality and appropriate access to source data (e.g.
allelic SNP information). Additionally to the calibration of individual
CNA profiles, other methods rely on the multi-sample statistics of probe
signals or segmentation data without resolving each individual sample
by itself [20] and usually are being applied to homogeneous series of
cancer profiling experiments or otherwise homogeneous input data
[21–23].

However, in many scenarios, the application of the aforementioned
computational methods may not be feasible for one or more reasons.
First, comparative analysis across multiple original studies typically has
to rely on segmented CNA data instead of raw array- or sequencing
data, since a) the original data may not be accessible due to privacy
concerns, administrative unspecified reasons; and b) the re-analysis of
data from legacy platforms may not be practically feasible. Ploidy es-
timation methods frequently rely on specific information from raw
source files and are limited to selected platforms which even with
available source data may limit their application to subsets represented
by supported platforms. Additionally, raw data based ploidy estimation
methods can have extensive demand with respect to computational
hardware and processing time, especially when processing high-volume
datasets. To our knowledge, currently no generic method addresses the
normalization of copy number data for aggregated analysis, in a
manner compatible with the limitations described.

In this study, we present Minimum Error Calibration and
Normalization for Copy Numbers Analysis (Mecan4CNA), a generic
computational method aimed to address issues associated with the
meta-analysis of very large, heterogeneous copy number profiling da-
tasets in cancer genomics. The method does not require access to raw
data; it is platform agnostic; and its performance enables the processing
of very large CNA datasets. As input, Mecan4CNA solely uses copy
number segmentation files, which can be generated as a standard
output by most platform-specific or generic CNA software packages or
processing pipelines. By primarily estimating normal signal levels and
determining abnormal single-count deviations, the method avoids the
intricacies of deterministic ploidy identification. In this fashion,
Mecan4CNA can calibrate and normalize large sets of copy number data
both accurately and efficiently. After applying Mecan4CNA, all copy
number values will be aligned to the corresponding true copy number
levels of the main tumor clones (i.e. “3” corresponding to 3 alleles at
any given region, across all samples) and be ready for follow-up ana-
lysis of regional CNA involvement as well as comparisons of whole-
genome CNA patterns between experiments. Benchmarking analyses on
simulated and real data showed the consistency of Mecan4CNA over a
wide range of input data qualities.

2. Method

A generic CNA segmentation file stores information about regional
copy number values as structured text. Usually, each line represents a
chromosome segment with its position, size and signal intensity, with
possible addition of optional data (e.g. probe count in segment, cate-
gorical CNA status). As explained in the introduction, the signal in-
tensity reflects a value derived from a possible admixture of cell types
(normal cells, main tumor cells and sub-clonal tumor cells). This pre-
servation of information is crucial for studying the details of tumor
ploidy, but it also makes the copy number data difficult to interpret and
compare.

Let X denotes a CNA profile and xi denotes the signal value of one
record in X (i.e. one segment), then a CNA profile can be modelled as
the following:

Fig. 1. The detected SNPs (black dots) and called segments (colored lines) of
the copy number profile of a gastrointestinal stromal tumor. The labels of y-axis
are the expected copy numbers. Only showing chromosome 1, 2, and 3.

B. Gao and M. Baudis Genomics 112 (2020) 3331–3341

3332



= … = + + + +

+ + =

X
x
x
x

x aN bT c S E e

for x X a b c

, (1 ),

, 1
n

i i i
n

i
n

i
n

m
i
m

j
j

i
n

i
n

1
2

where Ni, Ti and Si denote the actual copy numbers of normal cells,
primary clone tumor cells and sub-clonal cells, respectively. Likewise,
a, b and c are the composition ratio of normal cells, primary clone
tumor cells and sub-clonal cells of this segment, respectively. Ei

m re-
presents an independent error of the segment and ej represents a sys-
tematic error of the sample in each processing step.

Normally, for a copy number profile X, one needs to solve a, b and ci

to reveal the purity of the sample, and to solve at least Ti to know the
ploidy of the main tumor. Both tasks are very challenging because the
only known value from a segmentation file is xi. For this reason, com-
putational methods usually need to rely on additional information be-
sides the segmentation profile (e.g. raw data). In this study, our goal is
to calibrate and normalize xi from different profiles. This change of aim
allows us to circumvent the difficulty of evaluating the exact purity and
ploidy. Instead, we focus on estimating the deviation of the normal
level and the corresponding value of one copy alternation in each
profile. By pursuing a sub-optimal partial solution, we can dramatically
reduce the computation complexity.

Although we are solving for a partial solution, we still have to deal
with the problem of insufficient known values. Specifically, we elim-
inate variables and compute determined values by approximations and
transformations. First, we reduce the complexity of the representation
of xi. For each xi, the two terms ∑mEi

m and ∏j(1 + ej) are always con-
stants. If we also consider the summation of sub-clones as a single
pseudo-sub-clone, xi can be simplified as the following:
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where a, b, c and e are constants in each sample. Ni, Ti, Si and Ei are
variables of each xi. Here, Ei represents the integral of all errors.

Next, we introduce two new values: the distance and the ratio of the
distance to transform the problem. Let D(i, j) be the distance of xi and xj:
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Because germline copy number changes are rare events and are
usually filtered by most processing pipelines, we can assume Ni to be a
constant of 2. Then, D(i, j) can be simplified as:
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is the ratio of the distances between actual copy
number levels. When b > c, which means a biopsy where the pro-
portion of the main tumor is higher than the proportion of sub-clones,
we can have:
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The new term ei, j, k reflects the deviation from the actual copy
number, it reaches zero when xi, xj and xk are the same value as the
actual copy number level. Its value is influenced by the purity of the
sample. If the proportion of the primary tumor falls below 50% in the
sample, the error term may become the dominant value. However, in
most experiments, the purity of the primary tumor is usually at a rea-
sonable level. If we can find a tuple of xi and xj that gives the smallest ei,

j, k, we can say that this tuple represent two copy number levels in a
solution of X. Moreover, that is to calculate the following equation:

=argmin f i j e i j k X( , ) | , ,
k

i j k, ,

Furthermore, if the copy number difference of Ti and Tj is one,
which means ∣Ti − Tj ∣ = 1, then ri, j, k becomes an integer. Usually, the
segmentation data is generated from pipelines, where the systematic
error is properly reduced to a level that is smaller than the deviation.
Therefore, we can evaluate ei, j, k as the following:

=e I R where I R, is the nearest integer toi j k i j k i j k i j k i j k, , , , , , , , , ,

Theoretically, we have to evaluate f(i, j) for all pairwise combina-
tions in X, which is a nightmare of computation as it involves a tensor e
(i,j,k). In practise, there are two factors that can help reduce the
daunting searching space to a constant. First, we know the actual copy
number values are integers, therefore, the copy number values in a
segmentation file are normally distributed around the deviations of
these actual values. By computing the mean of each local normal dis-
tribution, we can reduce the number of candidate values of i, j and k to a
minimal set of size n, where n is usually no more than 20 (7 possible
integer copy number values from 0 to 6, signals from normal cells, the
main tumor and a few sub-clones). Second, because we want to find the
value of the normal copy number level, we always assume one of i and j
is the normal level. Therefore, we only need to evaluate a maximum of
n combination for each sample. Fig. 2 illustrates the general problem
and why we can reduce the search space.

Now, we have acquired a set of potential solutions: a pair of xi and
xj, where D(i, j) is 1 and one of them is the normal level. In the last step,
we need to determine which one is actually the normal level and which
one is the one copy alternation. By using a weighted function, we
consider the strength of the signal, the distance to the center and the
validness of models comprehensively. One with a higher Bscore is de-
termined as the normal level:

=
+ +

Bscore
S S S

3
signal distance model

Finally, let base and alt represent the values that corresponds to the
normal copy number level and one copy alternation in a segmentation
profile, respectively; let xi′ denotes the normalized value. We calibrate
and normalize the value of each segment through the following linear
transformations:

= +x x base
base alt

2i
i

After normalization, the copy number value of each segment will be
aligned to the actual integer copy number level of the main tumor
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clone. In a segmentation file, the values come as log2 ratios. They will
be converted to integer copy number values for the computation and
converted back to log2 ratios after normalization.

3. Results

In order to validate the performance of Mecan4CNA, first we com-
pared the estimation results of our method with results from kar-
yotyping and ABSOLUTE on cell line data. Next, we applied the method
on a series of simulated data to evaluate its consistency and general-
ization ability. Additionally, we explored the baseline deviation situa-
tion of copy number data from TCGA. Finally, we used Mecan4CNA-
normalized TCGA data as input for a GISTIC [20] analysis, to example a
possible improvement compared to using the unprocessed original data.

3.1. Performance on real data

The NCI-60 tumor cell lines were selected by the National Cancer
Institute of the United States (NCI) as a reference panel for drug
screening experiments. It comprises 60 human cancer cell lines from 9
different cancer types. Their molecular characteristics have been well
studied in the past two decades. Particularly, 58 cell lines have been
karyotyped using the spectral karyotyping protocol [24], and the copy
number variations of all cell lines have been profiled using microarray
experiments [25]. DNA copy number changes on chromosome 13 were
explored in detail in the karyotyping study. Among all karyotyped cell
lines, 30 have either no changes or only chromosome level changes on
chromosome 13. They represent ideal examples to validate the perfor-
mance of our method, because we can match the karyotyping data with
the microarray data to identify the copy number values (from micro-
arrays) that correspond to the actual normal and abnormal copy
number levels (from karyotyping). If we compare these values with the
estimation results of Mecan4CNA on chromosome 13, we can evaluate
the performance of the method.

When comparing data from microarrays with the karyotyped stan-
dard, 6 cell lines showed contradicting results and were excluded from
further analysis (5 karyotyped as one copy loss but microarray showed
normal; 1 karyotyped as one copy loss but microarray showed copy
gain). These differences may be explained by a possible clonal evolution
between the reference analysis and the cell line batches from which the
microarray data was prepared. The remaining 24 cell lines were used
for further analysis. In order to compare the performance of
Mecan4CNA with existing methods, we also used ABSOLUTE, a widely

used method to estimate purity and ploidy from copy number data, to
infer the corresponding copy number levels of each cell line. Fig. 3
shows the comparison results of Mecan4CNA and ABSOLUTE, respec-
tively. On both graphs, the estimated values were plotted against the
actual value of a copy number level. Mecan4CNA achieved 0.987 for
spearman correlation coefficient and 0.033 for root mean square error
(RMSE). Both scores indicate a strong and confident correlation be-
tween the estimation and actual values. ABSOLUTE achieved 0.988 for
spearman correlation coefficient and 0.049 for root mean square error
(RMSE). This high concordance confirmed the solid performance of
both methods on estimating copy number levels. Data is available in
Supplementary S1.

3.2. Performance on simulated data

To further evaluate the performance of Mecan4CNA, we applied the
method to 10 simulated datasets of different cell composition and noise
levels. Every dataset comprises 100 samples, which are copy number
segment profiles generated based on our modeling equation introduced
in the method section. The cell composition was generated using a
Dirichlet distribution. In samples where the main tumor is dominant in
the composition (later referred to as: high tumor), the composition ratio
of normal and sub-clones are capped at 0.2. Otherwise, the sample is
considered to have a low main tumor proportion (later referred to as:
low tumor). For both high tumor datasets and low tumor datasets, the
independent errors were generated using a normal distribution with the
standard deviation increasing from 0.001 to 0.009 with a step size of
0.002; the global errors were generated using a normal distribution
with the standard deviation increasing from 0.1 to 0.18 with a step size
of 0.02. The ploidy of normal cells was assumed to always be two. A
total of 1000 samples were generated in this manner, and both the
actual cell composition and tumor ploidy were known.

The five datasets containing samples with a high contribution of the
main (virtual) tumor clone show a gradual increase of noise levels from
dataset to dataset. A similar observation can be made in the other five
datasets with low tumor composition (high sub-clone or normal). We
used Mecan4CNA to estimate the values of the normal level and one
copy alternation of each sample, then compare the estimation accuracy
of the normal level (later referred as baseline) and the distance between
the normal level and one copy alternation level (later referred as level
distance).

As shown in Fig. 4, the estimation accuracy of Mecan4CNA de-
creases when the noise level increases or when the tumor composition

Fig. 2. The central part of an example histogram from a copy number profiling experiment, showing the distribution of values for given - binned - intensities.
Intensity values form approximately local normal distributions, and - as in this example - discrepancies between frequency peaks and expected values may illustrate
signal deviations from actual copy number levels.
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decreases. Specifically, when under the same noise level, for both the
baseline and level distance, the estimation generates more outliers in
low tumor datasets. This is often an indication of a low quality sample
or a very complex sample. When under the same tumor composition,
the estimation accuracy only shows very slight declines as the noise
level increases. It shows that the quality of the sample has a greater
impact on the accuracy of segmentation than the level of noise. When
comparing the estimation accuracy of the baseline and level distance,
the baseline estimation shows better consistency, even when facing the
low tumor and high noise data. This is because even in low tumor data,
as long as the genome is not in complete chaos, which occasionally
happens in cancer, the signal of normal DNA level (baseline) is often
still detectable. However, when the biopsy has a high proportion of
normal and sub-clone cells, the signal of the main tumor will be sig-
nificantly reduced, and the signal of sub-clones becomes more influ-
ential at the same time. The combination of these two effects makes it
much more difficult to have an accurate estimation of the main tumor's
abnormal copy number levels in samples with low tumor composition.
Mecan4CNA provides conservative estimates of the level distance since
overestimation can lead to undesired information loss during normal-
ization, and underestimation only introduces false-positive information.

Overall, Mecan4CNA performed with high accuracy and consistency
in all scenarios. Specifically, for the estimation of baseline, Mecan4CNA
achieved 97% average accuracy in the combination of all high tumor
composition datasets; 89% average accuracy in the combination of all
low tumor composition datasets; and 93% overall accuracy of all da-
tasets. For the estimation of level distance, Mecan4CNA achieved 96%
average accuracy in the combination of all high tumor composition
datasets; 86% average accuracy in the combination of all low tumor
composition datasets; and 91% overall accuracy of all datasets. In the
method section, we discussed that the proportion of the main tumor
should be much higher than the sub-clones, and the noise level should

have been calibrated and reduced by the pipeline. However,
Mecan4CNA showed good and consistent performance when dealing
with samples of high heterogeneity and noise level. It further illustrates
the consistency and generalization capability of Mecan4CNA.

3.3. Performance on low cellularity data

To test Mecan4CNA's capacity in extreme cases, we further simu-
lated two datasets of very low cellularity. One dataset is comprised of
20–40% primary tumor and 40–50% normal cells, and the other dataset
is comprised of 20–40% primary tumor and 40–50% sub-clonal cells.
The identification of the main tumor's copy number status is extremely
challenging in both datasets, because the signal is heavily clouded and
distorted by the excessive normal and sub-clonal cells. For the first
dataset, Mecan4CNA archived 72% accuracy in estimating the baseline
and 75% accuracy in estimating the level distance. When the tumor
cells are admixed with a high proportion of normal cells, the signal
intensity of abnormal copies is significantly reduced (Fig. 9a), thus
rendered in similarity to a noisy signal of the “normal” level. We used a
strategy of increasing the sensitivity (at the cost of decreased specifi-
city) to capture subtle changes. However, this is only applicable if the
admixture composition is already known (in practice e.g. from histo-
pathology). For the second dataset, estimation accuracy dropped con-
siderably to 60% accuracy for the baseline and 54% for the level dis-
tance. When the primary tumor cells are accompanied with sub-clonal
cells of high heterogeneity and proportion, their signal is rivaled by the
noise of equal strength (Fig. 9b) and therefore extremely difficult to
identify. Without additional information, even manual interpretation
failed to give definitive solutions in most cases. While we reduced the
resolution of signal binning to tolerate more noise, this also is related to
prior knowledge about the cellularity and only provided marginal im-
provement. Without fine tuning of the Mecan4CNA parameters based on
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Fig. 3. The comparison of estimated values and actual values on chromosome 13. The estimated values were calculated from the CNA file; the actual values were
derived from karyotyping results. (a) estimation by Mecan4CNA; (b) estimation by ABSOLUTE. The estimation results of two methods are highly coherent.
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known cellular composition, the performance in both scenarios was
below 50%. The accurate interpretation of low cellularity samples re-
presents a significant challenge and our testing indicates that the pure
computational approach frequently may be insufficient to solve cases
with low cellularity. In practice, the assessment can be improved when
combined with auxiliary data and domain expertise.

3.4. Performance on difference segmentation methods

Accurate segmentation is an important and challenging step in the
analysis of copy number profiles with a number of computational
methods having been proposed in the last two decades. However, there
is still a lack of a generic methods to fulfill all practical scenarios and
the performance of different methods is usually context dependent
[26]. In order to understand the influence of different segmentation
methods on Mecan4CNA's performance, we compared the estimation

results on three tumor datasets (Table 4) using two different segmen-
tation methods. In order to achieve broad coverage and diversity, first,
we chose three tumor data datasets of different diseases and platforms.
Then, each dataset was being segmented using two methods: DNAcopy,
which is based on Circular Binary Segmentation (CBS); and copynumber,
which is based on Piecewise Constant Fitting (PCF). Fig. 8 shows the
estimation results of both the baseline and the level distance, where the
comparison of the two methods shows high consensus. Specifically,
95% of baseline comparisons and 92% of level distance comparisons
show identical or close (less than 10% difference in value) results. Next,
we inspected the samples with inconsistent estimations and summar-
ized those into two causes: low quality of the raw data (e.g. high noise
data in GSM889595) and ambiguous interpretation (e.g. strong signals
from high-level duplications and deletions in GSM1098760). In all in-
consistent cases, at least one of the segmentation method generated the
correct estimate. By tuning parameters of the segmentation method, all

Fig. 4. The comparisons of estimated and actual values for CN baseline and CN level distances on simulated data with different settings. Rows 1 & 2: Baseline
estimation of low & and high tumor content data, respectively; Rows 3 & 4: Level distance estimation of low & and high tumor content data, respectively. The noise
levels increase gradually in each column from left to right. syse_sd is the standard deviation used to simulate systematic errors, and me_sd is the standard deviation
used to simulate measurement (individual) errors. The dotted lines indicate a threshold for filtering problematic results.
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inconsistent estimations could be corrected. Mecan4CNA relies on the
distribution of signals instead of the relations of segment levels and is
robust against regional inconsistency or high level of fragments. The
benchmark on two different segmentation methods showed Me-
can4CNA's capacity to tolerate a moderate discrepancy of different
segmentation methods in producing coherent results.

3.5. Applications of Mecan4CNA

3.5.1. Baseline deviation of TCGA data
The Cancer Genome Atlas (TCGA) provides a large collection of

copy number data from 33 cancer projects. The copy number data was
generated using Affymetrix SNP6 microarrays and a uniform processing
pipeline. We used Mecan4CNA to estimate the baseline value of all
TCGA copy number data, summarized by the project. As shown in
Fig. 5, baseline (the normal copy number level) deviation is widespread
with varying contributions related to individual projects. In general, the
deviation level is strongly correlated with the difficulty of acquiring
pure biopsies. In projects targeting diseases such as acute myeloid
leukemias (e.g. TCGA's LAML), where biopsies are usually pure, or
cervical squamous cell carcinomas and endocervical adenocarcinomas,
with predominant low amount of intra-tumor heterogeneity [27,28],
the original baseline levels are often accurate or have a low deviation.
In entities such a lung squamous cell carcinomas, where biopsies fre-
quently are difficult to obtain and different biopsy methods may lead to
a high heterogeneity [29], or serous ovarian (cyst-)adenocarcinomas,
where tumor cells are frequently in mixture with immune cells [30], the
original baseline estimates frequently deviate by a large amount from
the optimal value.

Although great efforts went into limiting errors and noise in TCGA
copy number data, they originated from projects addressing diverse
diseases and where data generation were different in time, space and
experimental conditions. The variation in the results does not directly
reflect on the accuracy of the results since the determination of an
underlying “Gold Standard” is beyond the scope of our methodology.
The generally good quality of these datasets allowed us to show that
baseline variation is a common and recurring problem among copy
number data.

3.5.2. Normalized data as GISTIC input
In order to demonstrate the effect of Mecan4CNA in copy number

data analysis, we applied GISTIC with both the original and the nor-
malized copy number data from the TCGA project. GISTIC is a widely
used multi-sample tool to detect and score focal regions in copy number
datasets. We chose data from 3 TCGA projects with different baseline
deviation levels to look for focal regions and potential driver genes
using GISTIC. GISTIC was run in gene-gistic mode with default para-
meters (Supplementary S2).

Table 1 illustrates the comparisons of called regions from GISTIC
using the original and normalized data. Overall, when using the nor-
malized data, the number of detected regions is significantly reduced
(Fig. 6). At the same time, when mapping focal regions to Cancer
Census Genes [31], the number the detected drivers actually increases
as shown in Fig. 7. Some driver genes are only captured using the
normalized data, such as PDGFRA in GBM, XPC in SKCM and CASP3 in
OV. For focal regions detected by both settings, the size of the region is
usually reduced by the normalized data. A few new focal regions con-
taining driver genes, which were too weak in signal when using the
original data, became significant and were detected using the normal-
ized data. For example, in the SKCM datasets, region
chr6:9090525–9,120,5562 was detected by the original data with high
significance but harbored no protein coding genes. When using the
normalized data, the signal strength of this region was reduced dra-
matically and it was not called as a focal region. Region
chr12:68834906–68,893,964 was called only when using the normal-
ized data and harbored two known oncogenes (CMP and MDM2). Re-
gion chr1:204403604–204,437,602 was narrowed and shifted to
chr1:204477206–204,586,780 by using the normalized data; this subtle
change removed a passenger gene PPP1R15B and included the onco-
gene MDM4.

The Molecular Signatures Database (MSigDB) [32] is a collection of
annotated gene sets for use with GSEA software. The “C6: oncogenic
signatures” represent signatures of cellular pathways that are often dis-
regulated in cancer. We mapped the genes called by GISTIC using the
original and the normalized data to each pathway in C6. Table 2 shows
pathways that are covered by a high number of genes in both data
settings. Pathways in bold are with known associations to melanoma,
for example, KRAS and P53. Although these pathways stood out in both
data settings, most of these pathways were covered with more genes
when using the normalized data. Table 3 shows pathways with sig-
nificant coverage difference between the original and the normalized
data. The coverage of several pathways (KRAS, PTEN, MYC), which
have strong associations with tumorigenesis in melanoma, were sig-
nificantly increased when using the normalized data. In summary,
when using the normalized data instead of the original data, the ana-
lysis result of GISTIC showed a prominent improvement in both sensi-
tivity and specificity.

4. Conclusions

In this study, we presented a novel method dubbed “Minimum Error
Normalization for Copy Numbers” (Mecan4CNA), aimed at supporting
calibrated meta-analyses on heterogeneous genomic copy number

Fig. 5. The distribution of baseline values estimated with Mecan4CNA in copy number profiling experiments from different TCGA projects (outliers not shown).

2 Base positions according to reference genome GRCh38.
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Table 1
Summary of detected regions of GISTIC using original and normalized data. Numbers in column represents the count of gain/loss.

Data No. regions No. genes No. census genes Gene density Driver density

GBM Original 29/46 143/1722 19/45 4.93/37.43 0.13/0.03
Normalized 26/40 110/1953 19/50 4.23/48.83 0.17/0.03

SKCM Original 33/37 1494/1721 58/43 45.27/46.51 0.04/0.02
Normalized 26/21 1860/2099 47/66 71.54/99.95 0.03/0.03

OV Original 38/51 423/2515 13/64 11.13/49.31 0.03/0.03
Normalized 35/36 382/2240 13/54 10.91/62.22 0.03/0.02

Fig. 6. The number of significant bands detected by GISTIC using different datasets.

Original

Normalized

PTPRD
GOPC
AKT3
HIF1A
ROS1

PDGFRA

TERT
CNTNAP2
MITF
RECQL4
CDKN2A
EPHA7
RAC1
CDK4
BLM
BRAF
CHD2

CDH17

SALL4
POLE
TBX3
XPC
BCLAF1

GOPC
PMS2
LRP1B
ARID1A
CCNE1
ROS1

ARID1B PTK6
CASP3

Fig. 7. Detected cancer census genes using the original and normalized data in the GBM, SKCM and OV datasets from TCGA. Numbers in circles represent the total
counts of detected census genes. Gene symbols in boxes indicate known cancer drivers among the detected genes for the respective diseases.
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profiling datasets. We tested the method on simulated and cell line data
and showed promising results in estimating baseline and copy number
levels from segmented copy number profiles, without the need for
probe intensities or SNP status information. When applied to the copy
number profiling data from the TCGA project, we were able to detect
frequent baseline deviations, which could be primarily attributed to the
purity of the corresponding samples. Finally, the comparison of results
from GISTIC analyses, when using the original and Mecan4CNA nor-
malized data as input, showed that the normalized data could provide a
significant improvement in both sensitivity and specificity for the de-
tection of focal alterations of cancer-related genes. As a generic tool for
analyzing copy number datasets, Mecan4CNA does not rely on any
additional data types beyond the segmented data from copy number
analysis pipelines, and is also efficient in speed and resource utilization.
While the primary utility of the method can be found in the meta-
analysis of large CNA datasets, Mecan4CNA also can facilitate single
sample CNA interpretation.

Availability and requirements

Home page: https://github.com/baudisgroup/mecan4cna
Operating system(s): Platform independent.
Programming language: Python.
Requirements: Python3.6 or higher.

License: MIT.
Restrictions: None.
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Availability of data and material

• The NCI-60 karyotyping data used during the current study is
available in the Gene Expression Omnibus repository (GSE32264:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE32264)

• The TCGA datasets used during the current study are available in the
TCGA Research Network: https://www.cancer.gov/tcga

• The C6 pathway data used during the current study is available in
the Molecular Signatures Database, http://software.
broadinstitute.org/gsea/msigdb/genesets.jsp?
collection=C6

Fig. 8. The comparison of Mecan4CNA's estimation results by using two different segmentation methods on three copy number datasets from GEO. Estimation from
different methods showed high coherence. Points in scatter plots were jittered to improve visual comprehension.
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Fig. 9. Two examples of low cellularity profiles shown in the signal histogram. In profile (a) with a high proportion of normal cells and high deviation, the signals
tend to form a tight cluster. (b) represents a profile with a high proportion of sub-clonal cells, where the exceptional noise level makes estimation extremely
challenging. Scales of the X-axis are uncalibrated copy number levels.

Table 2
MSigDB pathways with high coverage in both the original and normalized data
of SKCM. Pathways in bold have known associations with melanoma.

Pathway Original hits Norm hits Diff

NFE2L2.V2 13 19 6
KRAS.600_UP·V1_DN 10 19 9
IL21_UP·V1_UP 11 16 5
PRC2_EED_UP·V1_DN 12 15 3
ERB2_UP·V1_UP 11 13 2
TBK1.DF_UP 12 12 0
CSR_EARLY_UP·V1_UP 10 12 2
ESC_V6.5_UP_LATE.V1_UP 10 12 2
STK33_SKM_UP 10 11 1
STK33_UP 13 10 −3
CYCLIN_D1_KE_.V1_UP 10 10 0
CYCLIN_D1_UP·V1_UP 10 10 0
P53_DN·V1_DN 10 10 0
KRAS.600_UP·V1_UP 10 10 0

Table 3
MSigDB pathways with significant changes of coverage between the original
and normalized data of SKCM. Pathways in bold have known associations with
melanoma.

Pathway Original hits Norm hits Diff

PDGF_ERK_DN·V1_DN 3 15 12
NRL_DN·V1_UP 1 11 10
KRAS.600_UP·V1_DN 10 19 9
IL2_UP·V1_UP 8 17 9
VEGF_A_UP·V1_UP 7 16 9
STK33_DN 3 12 9
CRX_NRL_DN·V1_UP 1 10 9
MTOR_UP·V1_UP 5 13 8
PIGF_UP·V1_DN 4 12 8
STK33_NOMO_DN 2 10 8
TGFB_UP·V1_UP 7 15 8
RPS14_DN·V1_DN 7 15 8
KRAS.300_UP·V1_DN 5 12 7
KRAS.AMP.LUNG_UP·V1_DN 2 9 7
PDGF_UP·V1_UP 6 13 7
RAPA_EARLY_UP·V1_UP 8 15 7
IL15_UP·V1_UP 4 11 7
MTOR_UP·V1_DN 3 10 7
PTEN_DN·V1_UP 9 16 7
MEK_UP·V1_UP 7 14 7
MYC_UP·V1_UP 5 12 7
CAHOY_ASTROCYTIC 1 8 7
MEL18_DN·V1_DN 9 4 −5
PRC2_EZH2_UP·V1_DN 10 3 −7
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