

Global Alliance for Genomics & Health

Collaborate. Innovate. Accelerate.

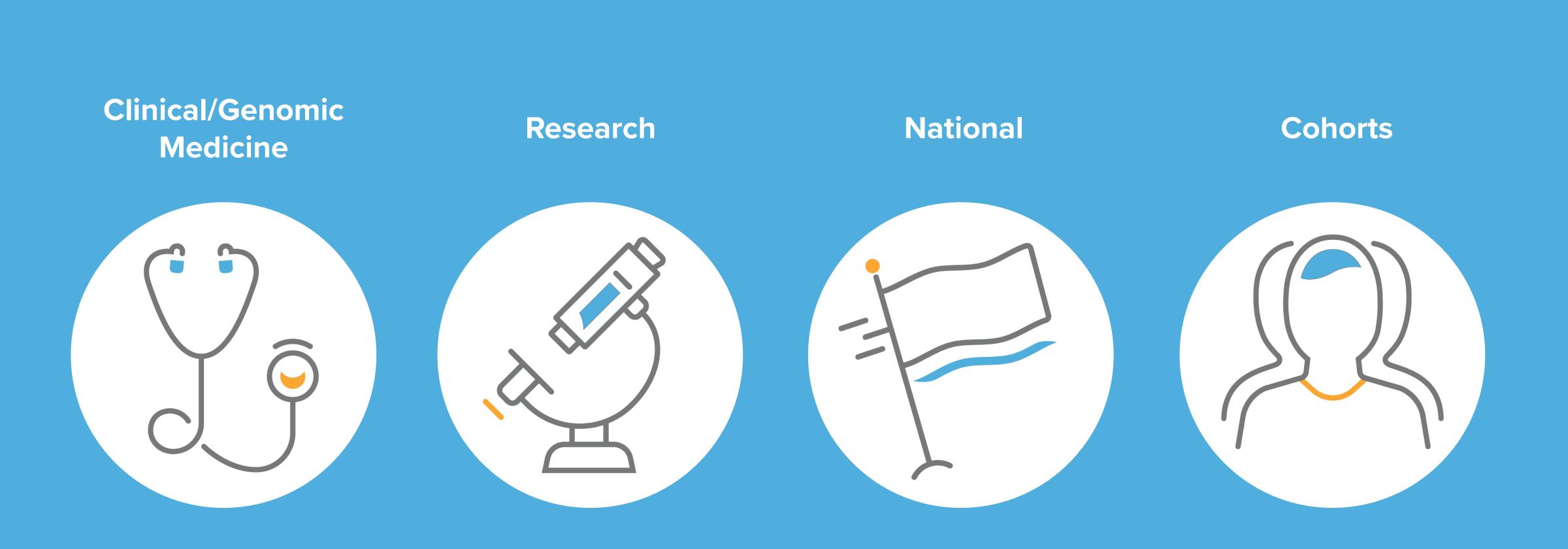
Genomics Data Federation through Global Alliance for Genomics and Health Standards Development and Implementation of the GA4GH Beacon Protocol

Michael Baudis Professor of Bioinformatics University of Zürich Swiss Institute of Bioinformatics **SIB** GA4GH Workstream Co-lead DISCOVERY Co-lead ELIXIR Beacon API Development

Genomics has seen massive and ongoing changes in technology

clear fissio -dimension energy landsca

eafloor spreading he view from ande he Arcticice

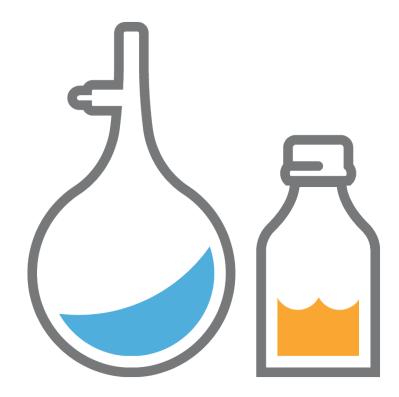

Career prospects Sequence creates new opportunities

naturejobs genomics special

human genome

200+ Genomic Data Initiatives Globally

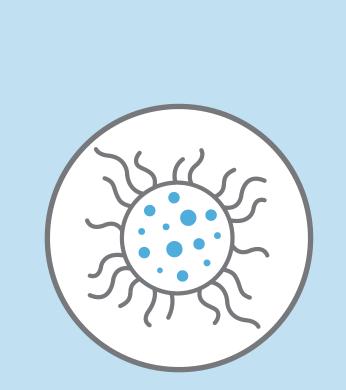
ga4gh.org


RESEARCH

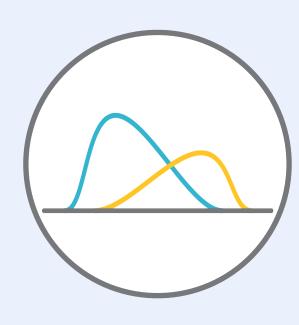
HEALTHCARE

60M individuals **132.5M** sequences

2.7-3M individuals



COHORTS


140M individuals

Global Genomic Data Sharing Can...

Demonstrate patterns in health & disease

Increase statistical significance of analyses

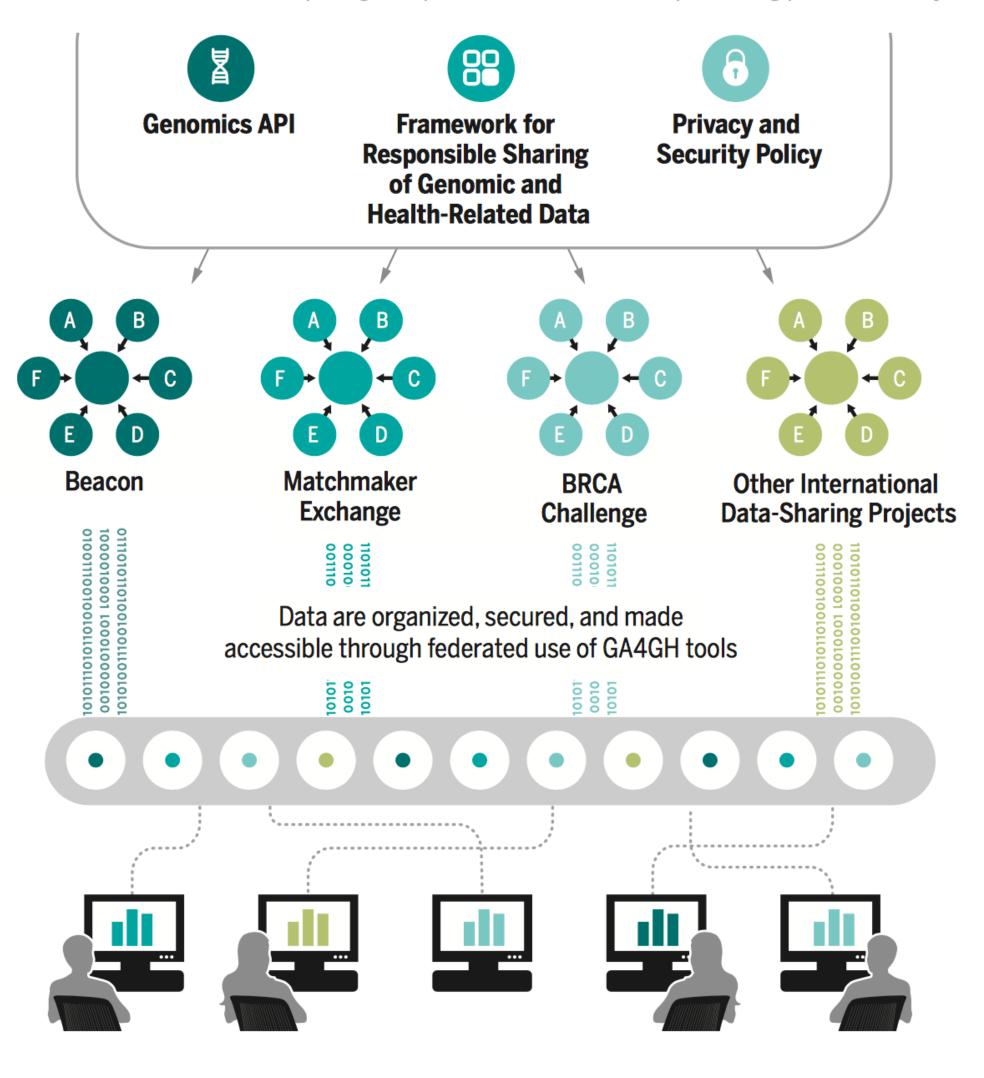
Lead to "stronger" variant interpretations

Global Alliance for Genomics & Health

Increase accurate diagnosis

Advance precision medicine

Since data is distributed globally, we need interoperable standards to answer research questions


GENOMICS

A federated ecosystem for sharing genomic, clinical data

Silos of genome data collection are being transformed into seamlessly connected, independent systems

The Global Alliance for Genomics and Health* **SCIENCE** 10 JUNE 2016 • VOL 352 ISSUE 6291

A federated data ecosystem. To share genomic data globally, this approach furthers medical research without requiring compatible data sets or compromising patient identity.

Global Alliance for Genomics & Health

GA4GH Timeline

2012

2014

Pre-Launch

GA4GH conceived at first meeting in New York

White Paper published on the need for genomic data sharing

Building Momentu

Formal launch of GA4G

Published Framework for Response of Genomic and Health-Relat

Formed four working gro

Developed three demonstration

Global Alliance

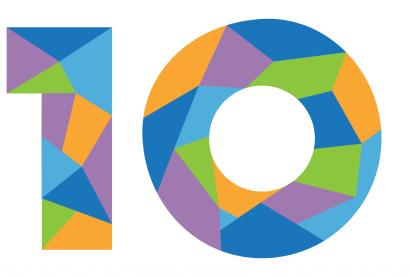
for Genomics & Health

2016	2018	2020
entum	GA4GH Connect	
GA4GH	Launch of "GA4GH Connect" and Strategic Roadmap	
sponsible Sharing Related Data	Formation of new organizational structure consisting of eight Work	
g groups	Streams and over twenty Driver Projects	
ration projects	Approved over twenty standards and policies	
	Over fifty organizations implementing GA4GH standards	

ga4gh.org

The Global Alliance for Genomics and Health Making genomic data accessible for research and health

- January 2013 50 participants from eight countries
- June 2013 White Paper, over next year signed by 70 "founding" member institutions (e.g. SIB, UZH)
- March 2014 Working group meeting in Hinxton & 1st plenary in London
- October 2014 Plenary meeting, San Diego; interaction with ASHG meeting
- June 2015 3rd Plenary meeting, Leiden
- September 2015 GA4GH at ASHG, Baltimore
- October 2015 DWG / New York Genome Centre
- April 2016 Global Workshop @ ICHG 2016, Kyoto
- October 2016 4th Plenary Meeting, Vancouver
- May 2017 Strategy retreat, Hinxton
- October 2017 5th plenary, Orlando
- May 2018 Vancouver
- October 2018 6th plenary, Basel
- May 2019 GA4GH Connect, Hinxton
- October 2019 7th Plenary, Boston
- October 2020 Virtual Plenary, June 2021 Virtual Connect ...
- October 2021 Virtual Plenary ...
- September 2022 10th Plenary, Barcelona


GENOMICS

A federated ecosystem for sharing genomic, clinical data

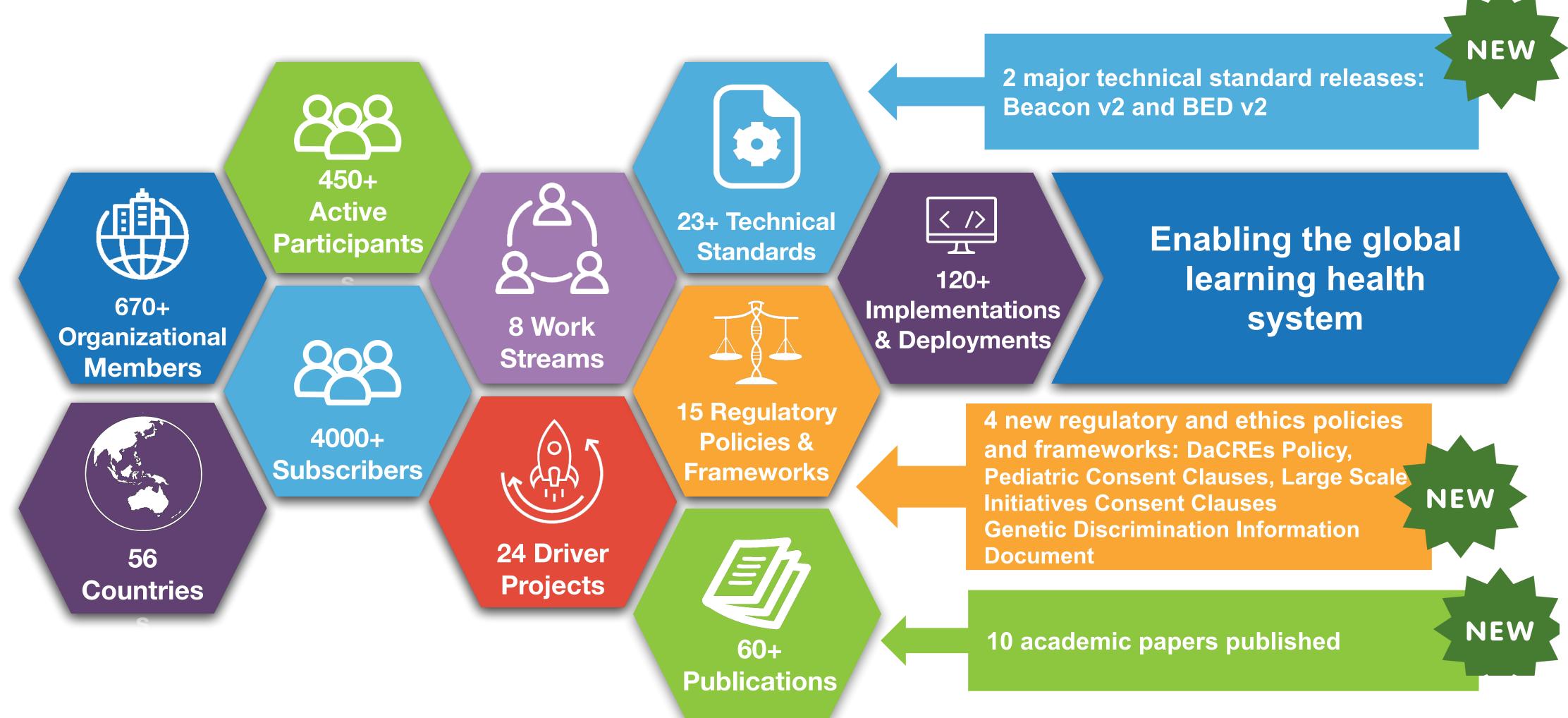
Silos of genome data collection are being transformed into seamlessly connected, independent systems

The Global Alliance for Genomics and Health*

SCIENCE 10 JUNE 2016 • VOL 352 ISSUE 6291

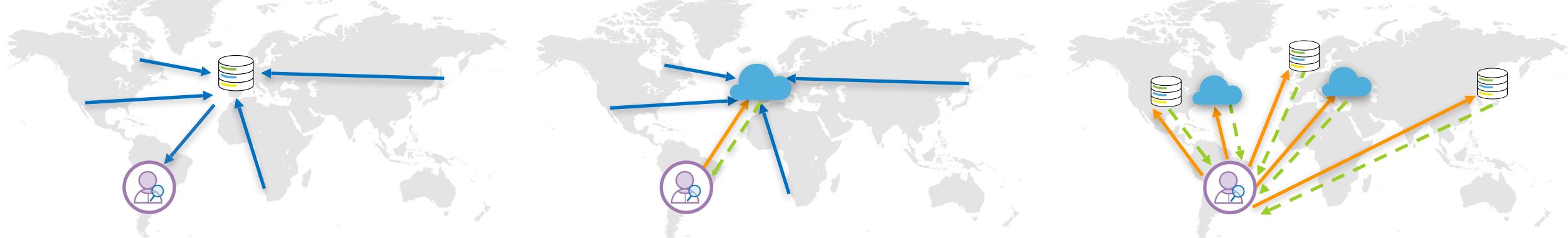
22 SEPTEMBER 2022 | BARCELONA, SPAIN

GA4GH 10th Plenary



The GA4GH ecosystem and outputs

Global Alliance for Genomics & Health


ga4gh.org

Federation

Central Database Basic research consented for data sharing


Aggregate data globally

Download, analyze locally

Analyze centrally in secure cloud

Data transmission — Data Visiting

Secure Cloud

Large scale research datasets

Federated Approach

Connecting national genomics initiatives

Aggregate data globally

Host data locally

Analyze data remotely and collate results

Results sent back to user


ga4gh.org

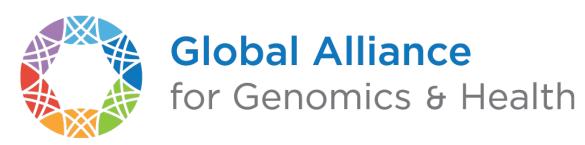
Federation: a solution for data analysis

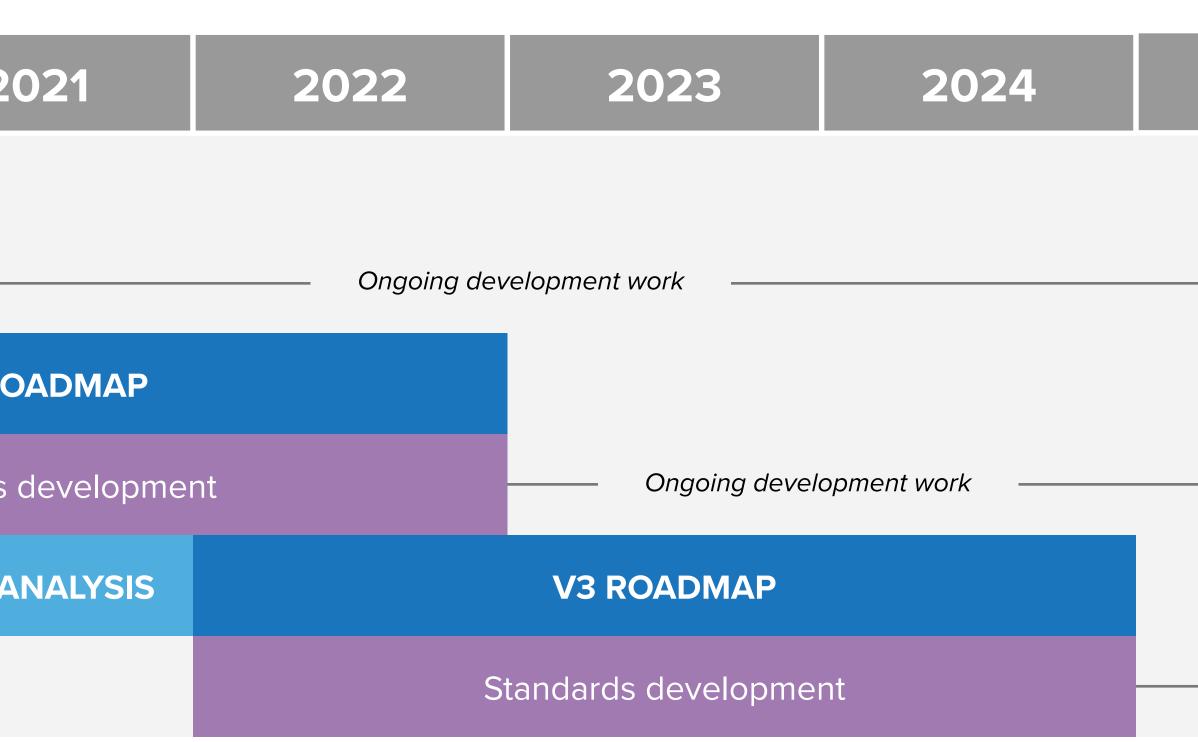
No data copying or transfer

Data can remain in original jurisdiction

Ownership and access control retained

Global Alliance for Genomics & Health


Collaborate. Innovate. Accelerate.


GA4GH Standards Development

GA4GH Roadmap Development Process

2	2020	2019	2018
		V1 ROADMAP	
	8 in development	ls approved	15 standarc
V2 RC		GAP ANALYSIS	
standards	S		
GAP A			

Strategic Roadmap Alignment to F.A.I.R. Principles

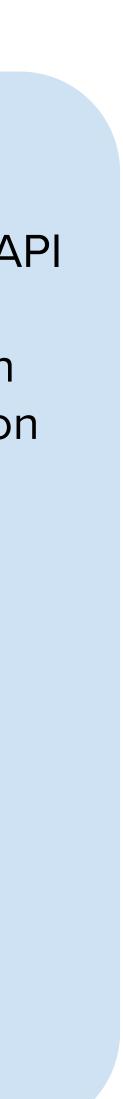
Findable

- Beacon API
- Data Use Ontology
- refget API
- Search API
- Service Registry Prototype
- **Tool Registry Service** (TRS) API

Accessible

- Authentication and Authorization Infrastructure
- Data Repository Service (DRS) API
- Data Use Ontology
- **GA4GH** Passports

Global Alliance


for Genomics & Health

Interoperable

- Phenopackets/FIHR
- Pedigree Representation
- Genetic variant file formats
- Read file formats
- RNAget API
- Crypt4GH
- Variant Annotation
- Variant Representation
- Task Execution Service (TES) API
- Testbed interoperability demonstration
- Tool Registry Service (TRS) API
- Workflow Execution Service (WES) API

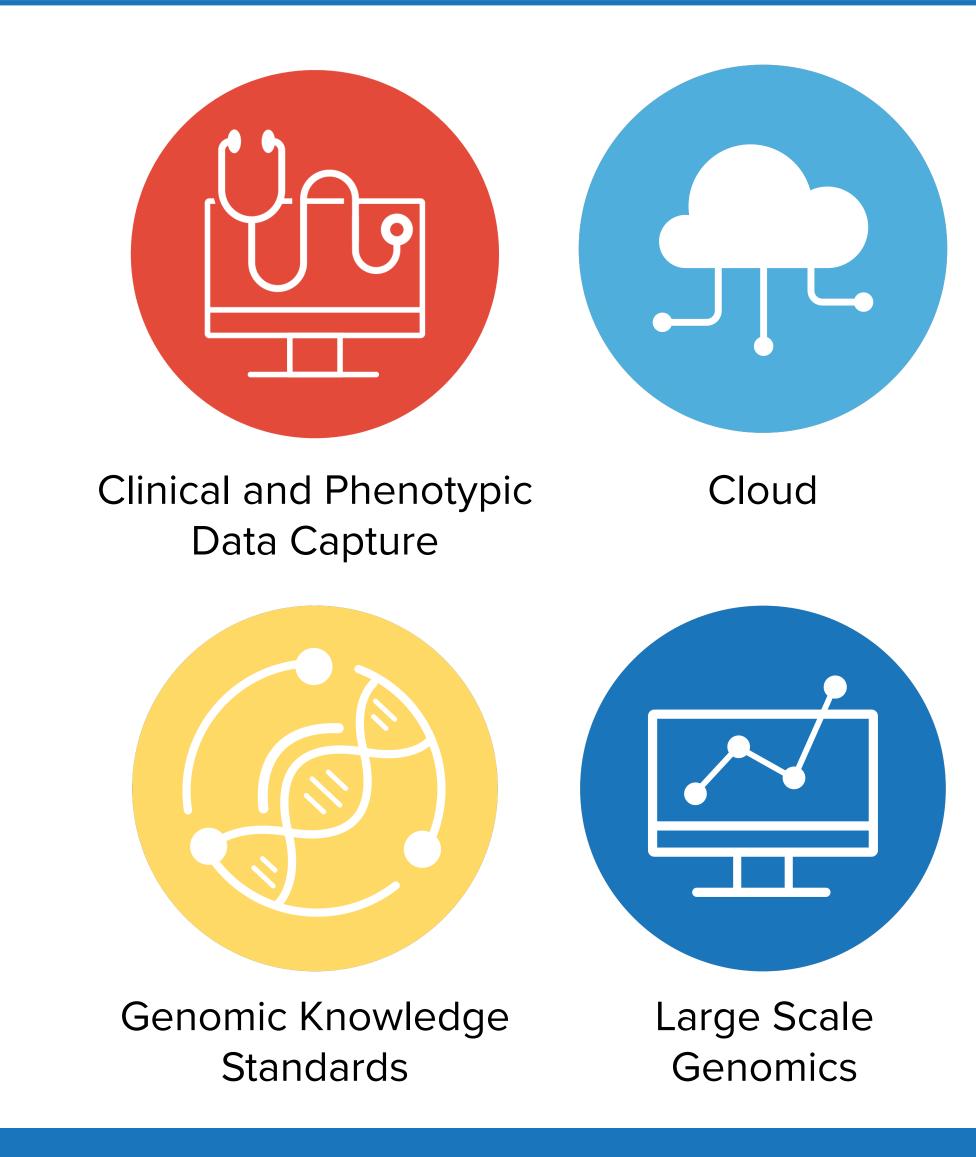
Reusable

- htsget streaming API
- refget API
- Variant Annotation
- Workflow Execution Service (WES) API
- Testbed interoperability demonstration

Alignment with Other Standards Organizations

Research

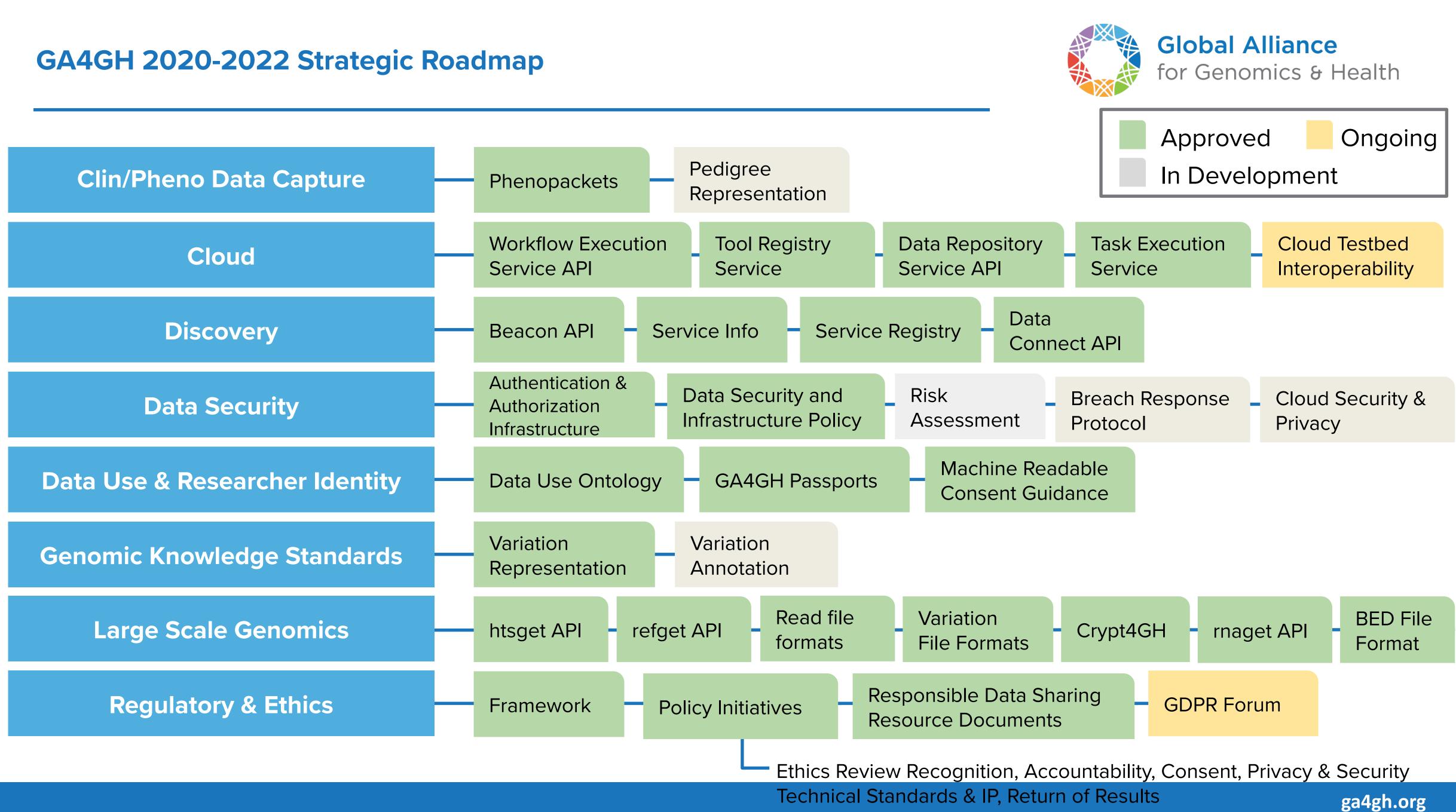
Clinical Research Clinical Care HL7 FHIR **SNOMED** cdisc KTX TC215/ SC1

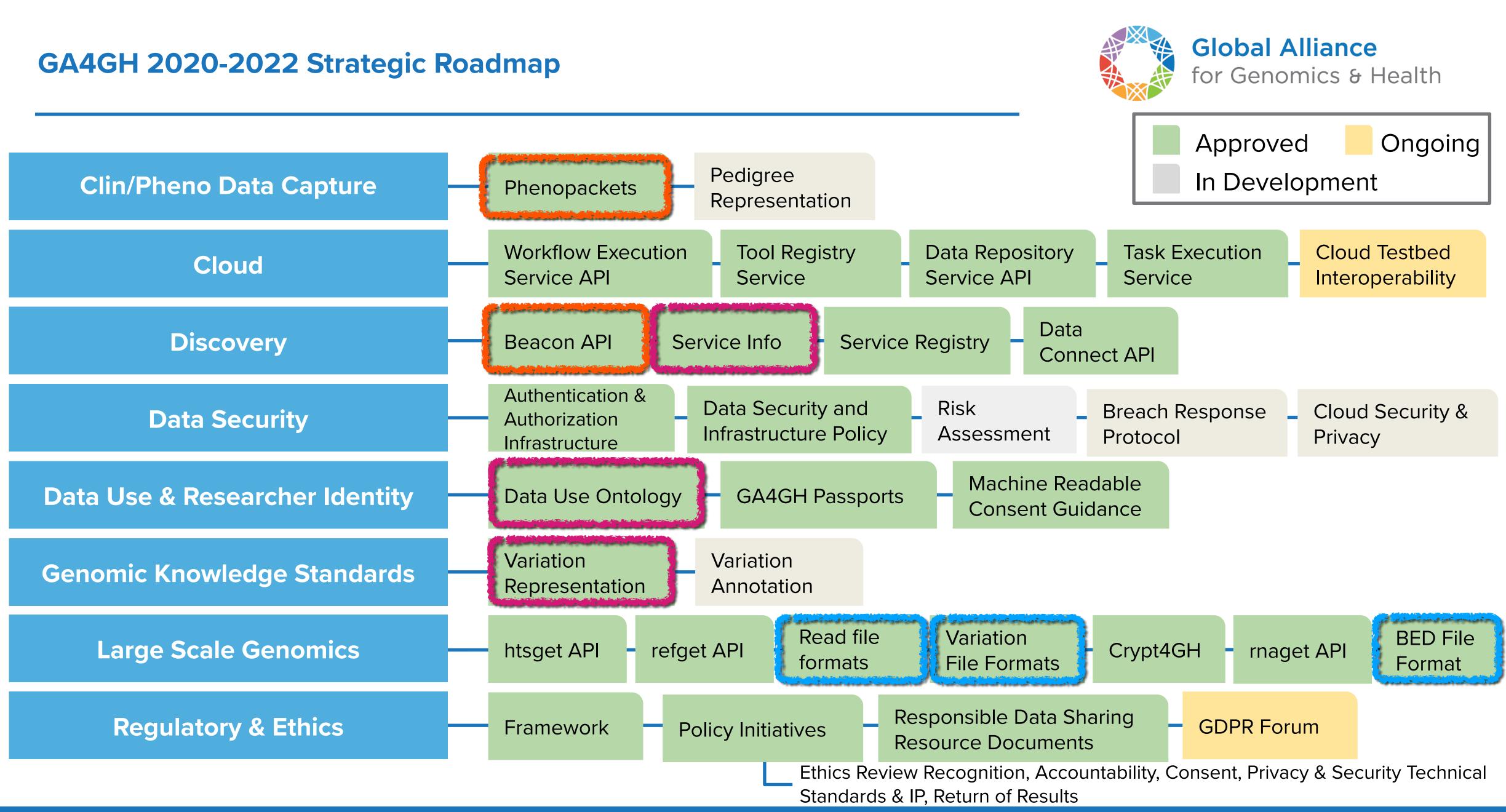


GA4GH Work Streams

Global Alliance for Genomics & Health

Data Use and **Researcher Identities** Discovery




Regulatory and Ethics

Data Security

ga4gh.org

Clinical & Phenotypic Data Capture Work Stream

exchanging clinical phenotypes.

Proposed Solution

Standardize exchange formats for representing clinical data and describing clinical phenotypes.

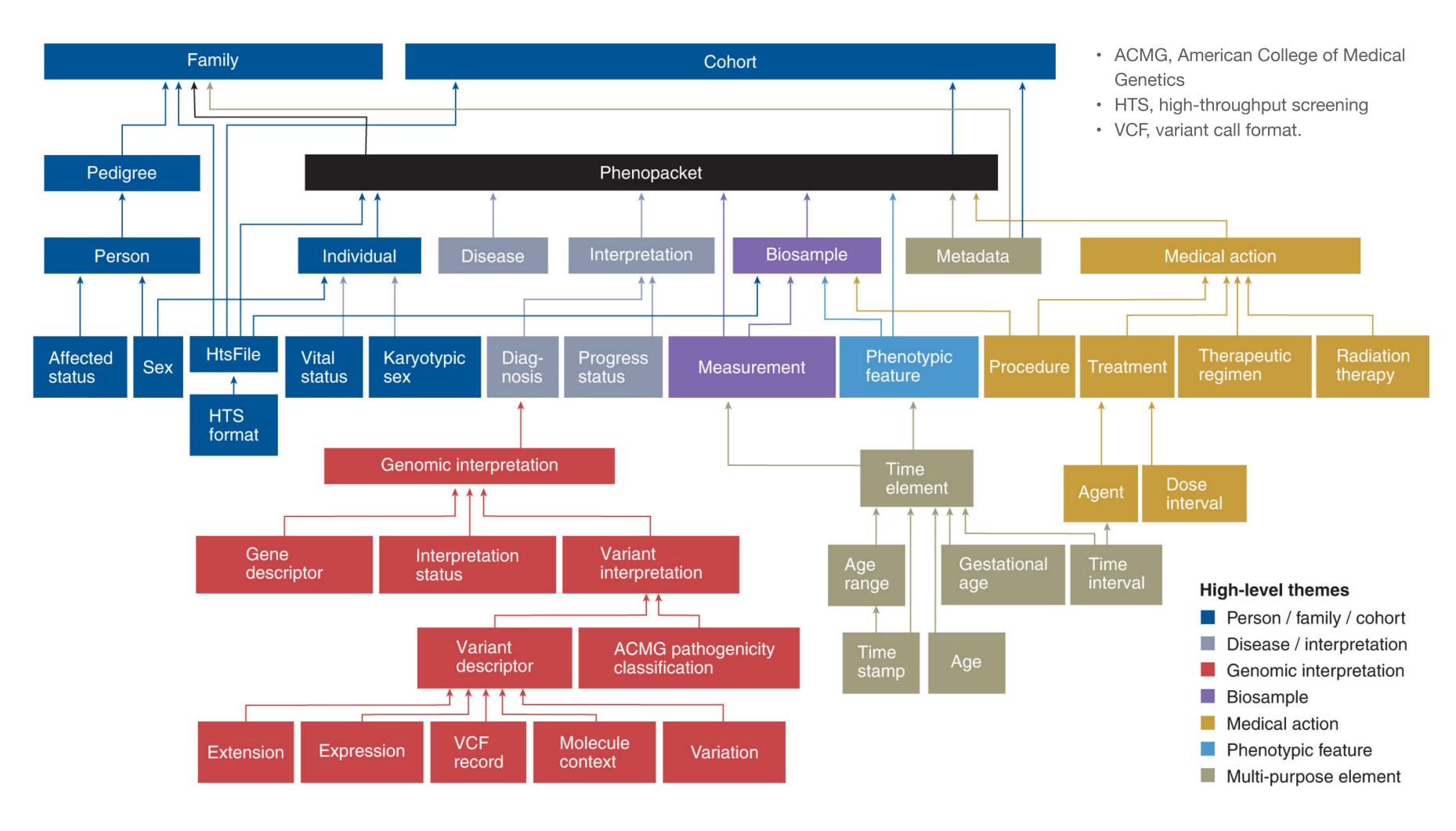
Global Alliance for Genomics & Health

Support clinical adoption of genomics through information models and standards for describing and

GA4GH Deliverables

Pedigree

New project: Cohort Representation

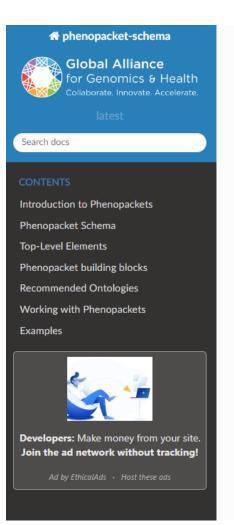

The GA4GH Phenopackets v2 Standard A Computable Representation of Clinical Data

The GA4GH Phenopacket schema consists of several optional elements, each containing information about a certain topic, such as phenotype, variant or pedigree. An element can contain other elements, which allows a hierarchical representation of data.

For instance, Phenopacket contains elements of type *Individual, PhenotypicFeature, Biosample* and so on. Individual elements can therefore be regarded as **building blocks** of larger structures.

Jacobsen JOB, Baudis M, Baynam GS, Beckmann JS, Beltran S, Buske OJ, Callahan TJ, *et al.* 2022.

The GA4GH Phenopacket Schema Defines a Computable Representation of Clinical Data. *Nature Biotechnology* 40 (6): 817–20.



Phenopackets Available via GA4GH and ISO

GA4GH

Docs » Welcome to the documentation for the phenopacket-schema!

Welcome to the documentation for the phenopacket-schema!

The goal of the phenopacket-schema is to define the phenotypic description of a patient/sample in the context of rare disease, common/complex disease, or cancer. The schema as well as source code in Java, C++, and Python is available from the phenopacket-schema GitHub repository.

Version 1 of phenopackets was approved by GA4GH in October, 2019. Based on initial experiences and feedback from multiple sources, and discussions in the GA4GH Clin/Pheno Workstream and Phenopackets Subgroups, version 1 has been extended to include better representation of the time course of disease, treatment, and cancer-related data. The current document refers to the version 2 of the Phenopackets schema. Version 2 is currently being finalized by the Global Alliance for Genomics and Health (GA4GH) Clinical & Phenotypic Data Capture workstream.

To see the documentation for version 1, which was approved by GA4GH in 2019, use this link.

Contents

- · Introduction to Phenopackets
- Phenopacket basics
- Requirement Levels
- Ontologies
- A short introduction to protobuf
- FHIR Implementation Guide
- Phenopacket Schema
- Version 1.0
- Version 2.0

Standards About us News Taking part Store

Search

$\leftarrow \mathsf{ICS} \leftarrow \mathsf{35} \leftarrow \mathsf{35.240} \leftarrow \mathsf{35.240.80}$

ISO 4454:2022 Genomics informatics — Phenopackets: A format for phenotypic data exchange

🗉 Preview

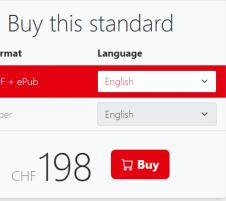
Abstract

This document specifies a uniform, machine-readable, phenotypic description of an individual, patient or sample in the context of rare disease, common/complex disease or cancer.

It is applicable to academic, clinical and commercial research, as well as clinical diagnostics. While intended for human data collection, it can be used in other areas (e.g. mouse research). It does not define the phenotypic information that needs to be collected for a particular use but represents that information in an appropriately descriptive manner that allows it to be computationally exchanged between systems.

General information [▶]

Status : 🕑 Published	Publication date : 2022-07
Edition : 1	Number of pages : 86


Technical Committee : ISO/TC 215/SC 1 Genomics Informatics

G Edit on GitHub

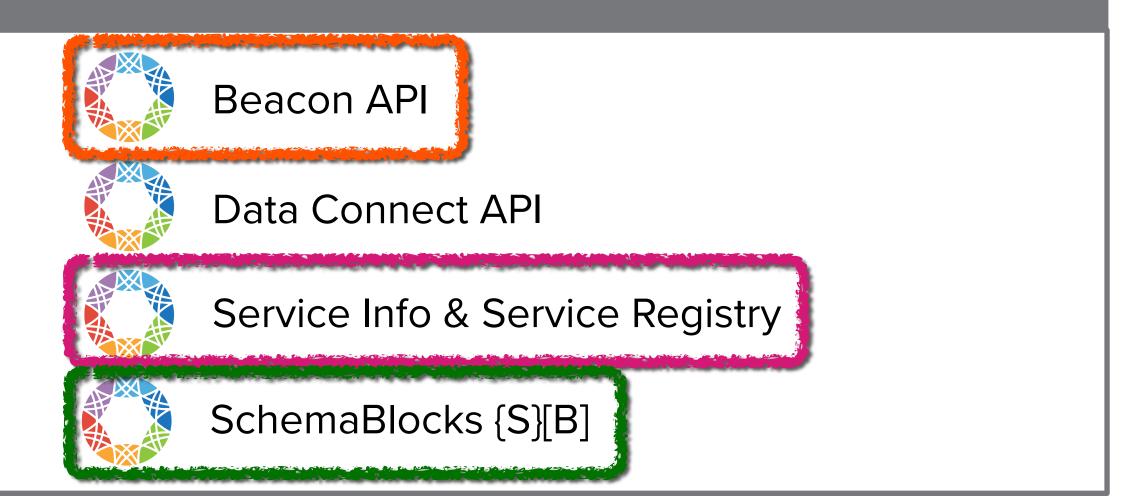
Q

https://bit.ly/PhenopacketsDocs

https://www.iso.org/standard/79991.html

Discovery Work Stream

Facilitate the discovery and utilization of data sources and services


Proposed Solution

Establish a unified interface for aggregating data sources and services that can be crawled and indexed

Global Alliance for Genomics & Health

GA4GH Deliverables

GA4GH {S}[B] SchemaBlocks

- "cross-workstreams, cross-drivers" initiative to document GA4GH object standards and prototypes, data formats and semantics
- documentation and implementation examples provided by GA4GH members
- no attempt to develop a rigid, complete data schema
- object vocabulary and semantics for a large range of developments
- currently not "authoritative GA4GH • recommendations"
- GA4GH roadmap as element in "TASC" •

SchemaBlocks {S}[B] Home About SchemaBlocks Contacts Schemas Standards & Practices {S}[B] Legacy Site ↗ Beacon Project *◄*

{S}[B] Schemas

This page lists (some of the) schemas and schema components from within the GA4GH ecosystem according to their status levels. Emphasis here is to be "instructive" without claims to represent the current or detailed status - please follow the links to the original projects for details.

Status: core

DUO - DataUseLimitation

The Data Use Limitation is a component of the GA4GH DUO standard and used to describe limitations in the ways data items can be re-used.

 \rightarrow Continue reading

DUO - DataUseModifier

The Data Use Modifier is a component of the GA4GH DUO standard and used as optional refinement of the limitations defined in DataUseLimitation.

 \rightarrow Continue reading

GA4GH - Checksum

The Checksum standard provides a simple schema for defining a checksum value together with a default type.

 \rightarrow Continue reading

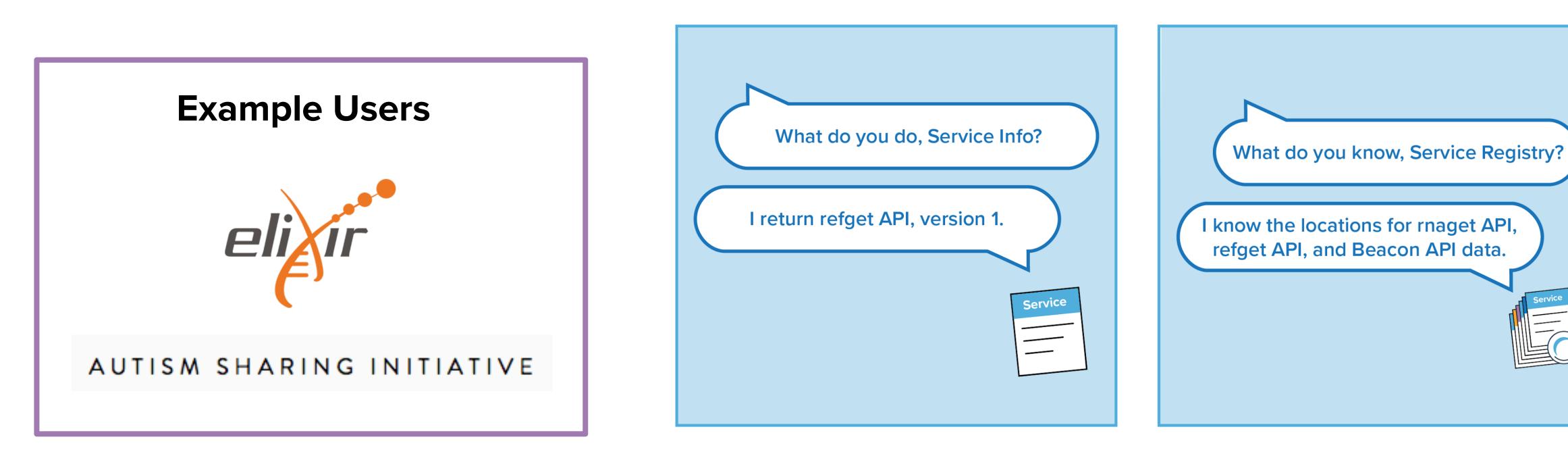
Phenopackets - OntologyClass

OntologyClass is an essential core core elementin GA4GH schemas. It essentially defines the standard way to terms or

classes by their id - which should be a CURIE - and optionally a label for informative purposes.

 \rightarrow Continue reading

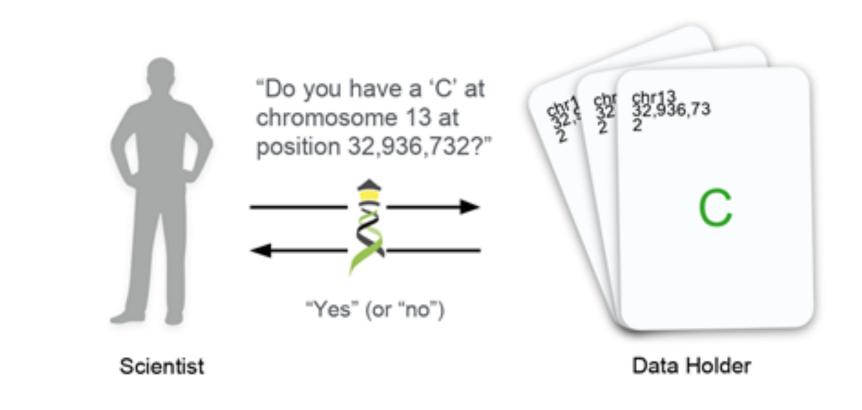
Use Ontology

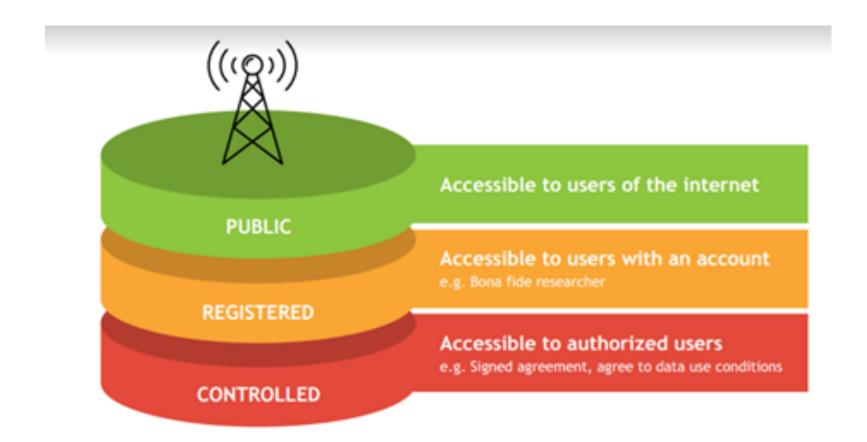


Service Info and Service Registry APIs

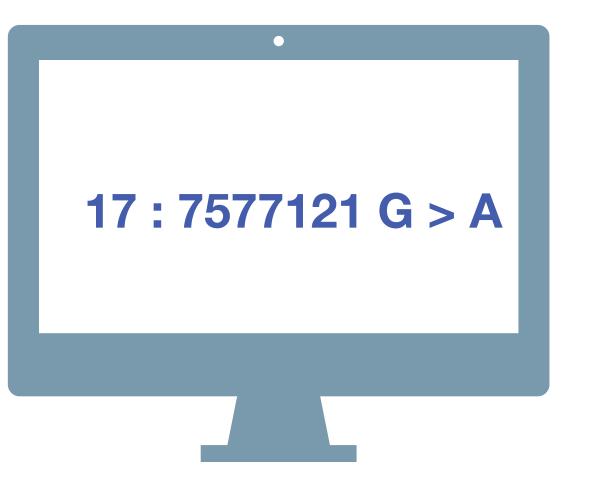
The Service Info and Registry APIs are minimalistic, light-weight APIs that provide a standard format for describing and listing genomics web services along with their metadata.

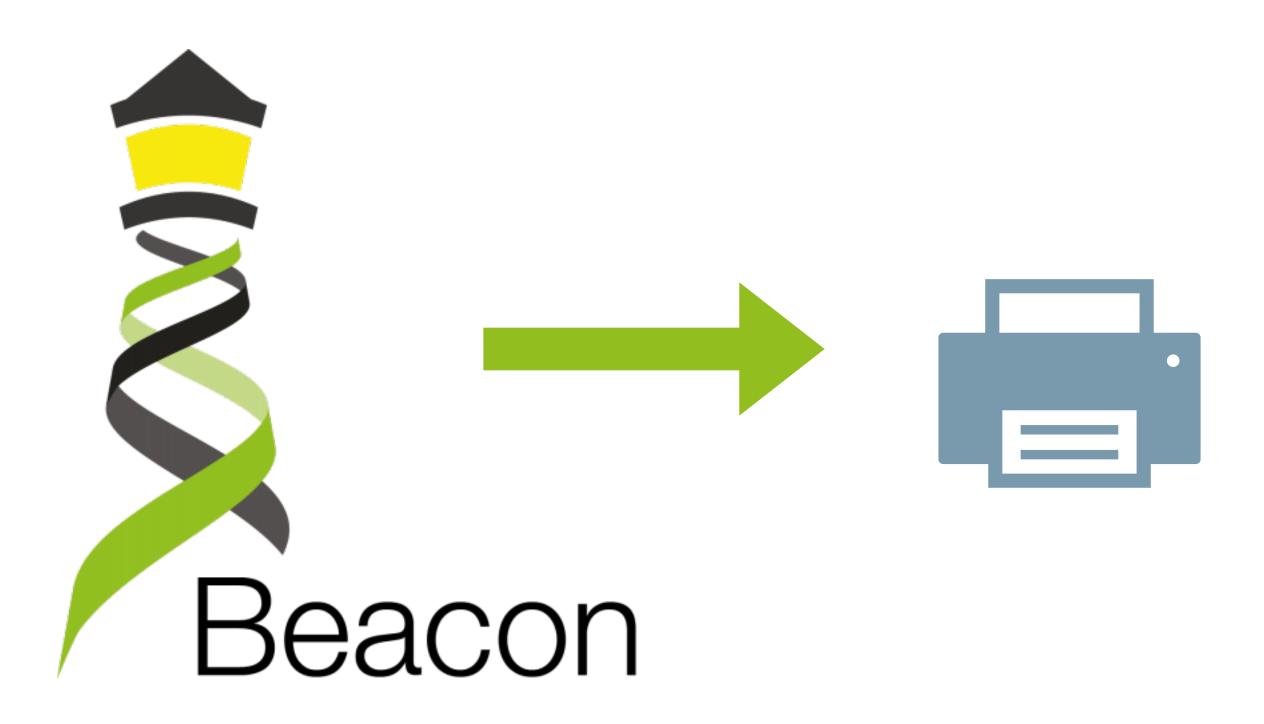
Approved: January 22, 2020


The GA4GH Beacon Protocol A GA4GH standard for genomics data discovery (and exchange)


The Beacon API can be implemented as a web-accessible service that users may query for information about a specific allele.

Approved: October 3, 2018





ga4gh.org

A **Beacon** answers a query for a specific genome variant against individual or aggregate genome collections YES NO \0

Have you seen this variant? It came up in my patient and we don't know if this is a common SNP or worth following up.

A Beacon network federates genome variant queries across databases that support the **Beacon API**

Here: The variant has been found in **few** resources, and those are from **disease** specific collections.

Global Alliance "Beacon" - Jim Ostell, NCBI, March 7, 2014 Introduction

... I proposed a challenge application for all those wishing to seriously engage in *international* data sharing for human genomics. ...

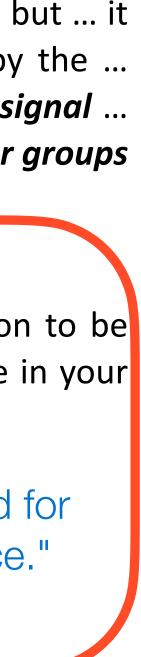
- 1. Provide a public web service
- 2. Which accepts a query of the form "Do you have any genomes with an "A" at position 100,735 on chromosome 3?"
- 3. And responds with one of "Yes" or "No" ...

"Beacon" because ... people have been scanning the universe of human research for signs of willing participants in far reaching data sharing, but ... it has remained a dark and quiet place. The hope of this challenge is to 1) trigger the issues blocking groups ... in way that isn't masked by the ... complexities of the science, fully functional interfaces, and real issues of privacy, and to 2) in short order ... see real beacons of measurable signal ... from at least some sites ... Once your "GABeacon" is shining, you can start to take the next steps to add functionality to it, and finding the other groups ... following their GABeacons.

Utility

Some have argued that this simple example is not "useful" so nobody would build it. Of course it is not the first priority for this application to be scientifically useful. ...intended to provide a low bar for the first step of real ... engagement. ... there is some utility in ...locating a rare allele in your data, ... not zero.

A number of more useful first versions have been suggested.


- 1. Provide *frequencies of all alleles* at that point
- 2. Ask for all alleles seen in a gene *region* (and more elaborate versions of this)
- 3. Other more complicated queries

Implementation

- 1. Specifying the chromosome ... The interface needs to specify the *accession.version* of a chromosome, or *build number*...
- 2. Return values ... right to *refuse* to answer without it being an error ... DOS *attack* ... or because ...especially *sensitive*...
- 3. Real time response ... Some sites suggest that it would be necessary to have a *"phone home" response* ...

"I would personally recommend all those be held for version 2, when the beacon becomes a service." Jim Ostell, 2014

ELIXIR - Making Beacons Biomedical

- Authentication to enable non-aggregate, patient derived datasets
 - ELIXIR AAI with compatibility to other providers (OAuth...)
- Scoping queries through "biodata" parameters
- Extending the queries towards clinically ubiquitous variant formats
 - cytogenetic annotations, named variants, variant effects
- Beacons as part of local, secure environments
 - local EGA ...
- Beacon queries as entry for data delivery
 - handover to stream and download using htsget, VCF, EHRs
- Interacting with EHR standards
 - FHIR translations for queries and handover ...

2016 and beyond ...

2022

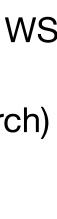
2014 GA4GH founding event; Jim Ostell proposes Beacon concept with "more features... version 2"

2015	 beacon-network.org aggregator created by DNAstack 	
	 Beacon v0.3 release 	• B
2016	 work on queries for structural variants (brackets for fuzzy start and end 	р • С
2017	 parameters) OpenAPI implementation integrating CNV parameters (e.g. "startMin, statMax") 	• e (" • B
2018	 Beacon v0.4 release in January; feature release for GA4GH approval process GA4GH Beacon v1 approved at Oct plenary 	• B • B
2019	ELIXIR Beacon Network	• B • a
2020		• "(fil • d
2021		• fr • ra • st

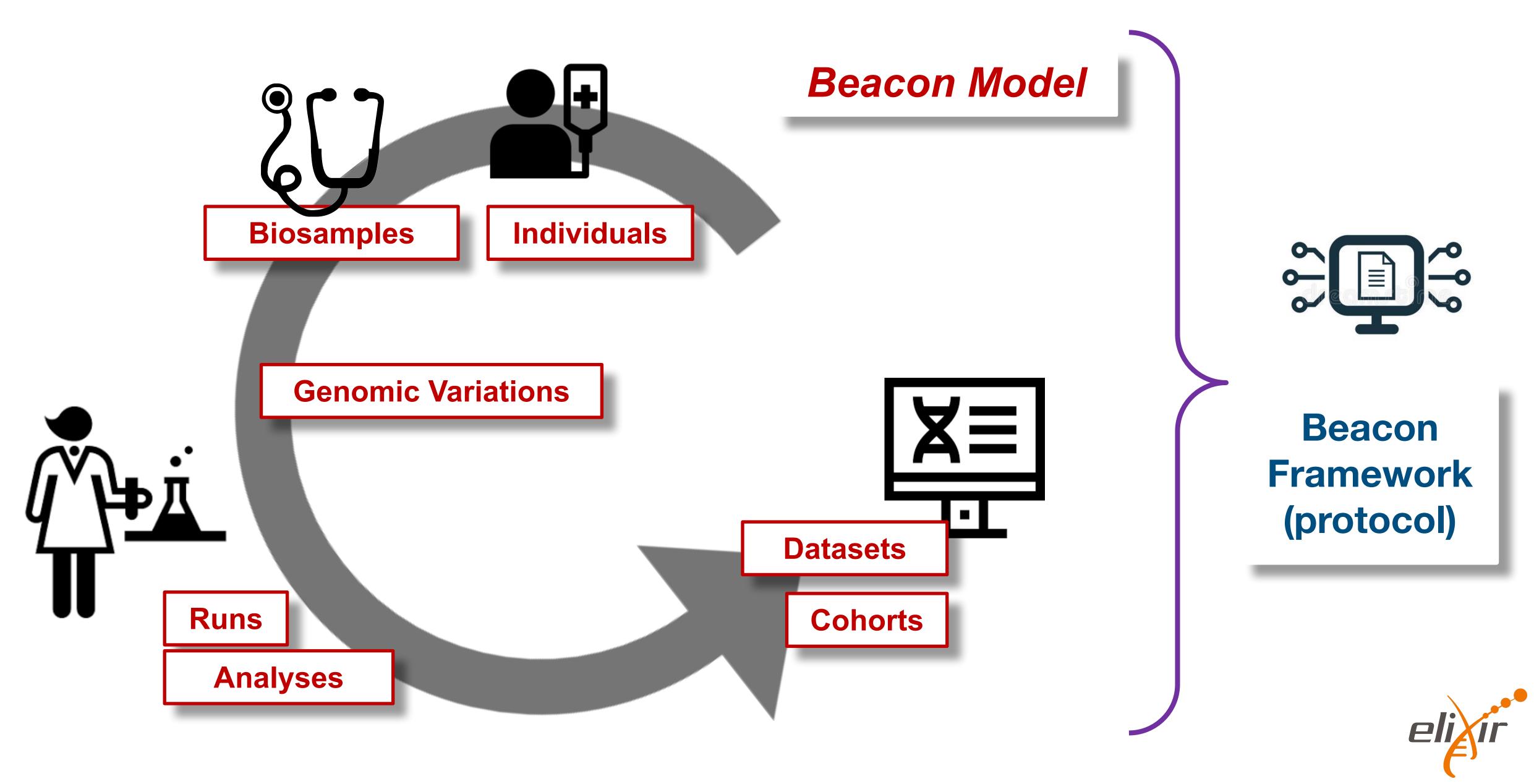
- further changes esp. in default model, aligning with Phenopackets and VRS unified beacon-v2 code & docs repository Beacon v2 approved at Apr GA4GH Connect

Beacon v2 Development

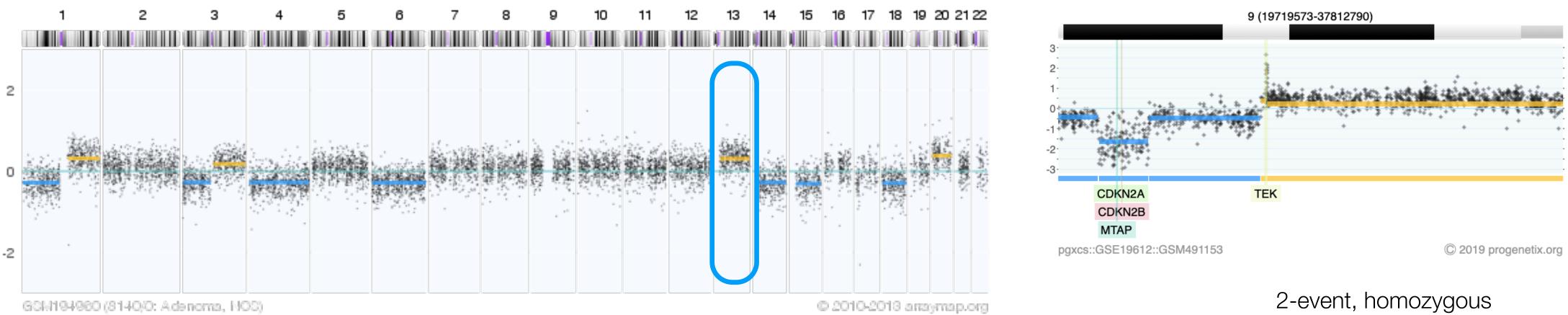
- Beacon⁺ concept implemented on
- rogenetix.org
- oncepts from GA4GH Metadata (ontologies...)
- ntity-scoped query parameters
- 'individual.age")
- Beacon+ demos "handover" concept
- Beacon hackathon Stockholm; settling on "filters" Barcelona goes Zurich developers meeting Beacon API v2 Kick off dopting "handover" concept
- Scouts" teams working on different aspects -Iters, genomic variants, compliance ... iscussions w/ clinical stakeholders
- ramework + models concept implemented ange and bracket queries, variant length tarting of GA4GH review process


Related ...

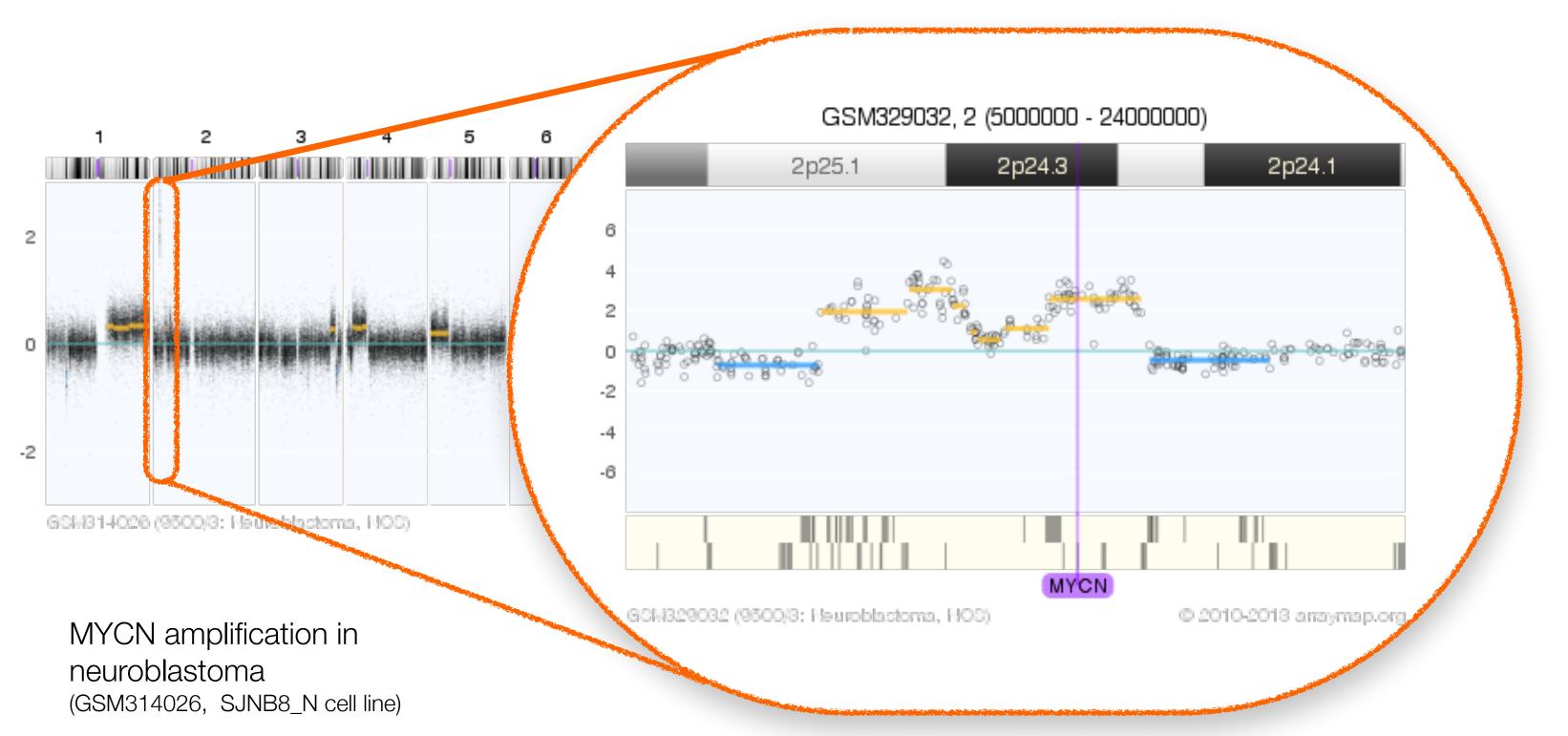
• ELIXIR starts Beacon project support


- GA4GH re-structuring (workstreams...)
- Beacon part of Discovery WS
- new Beacon website (March)
- Beacon publication at Nature Biotechnology

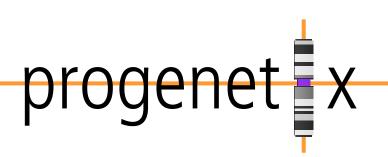
docs.genomebeacons.org

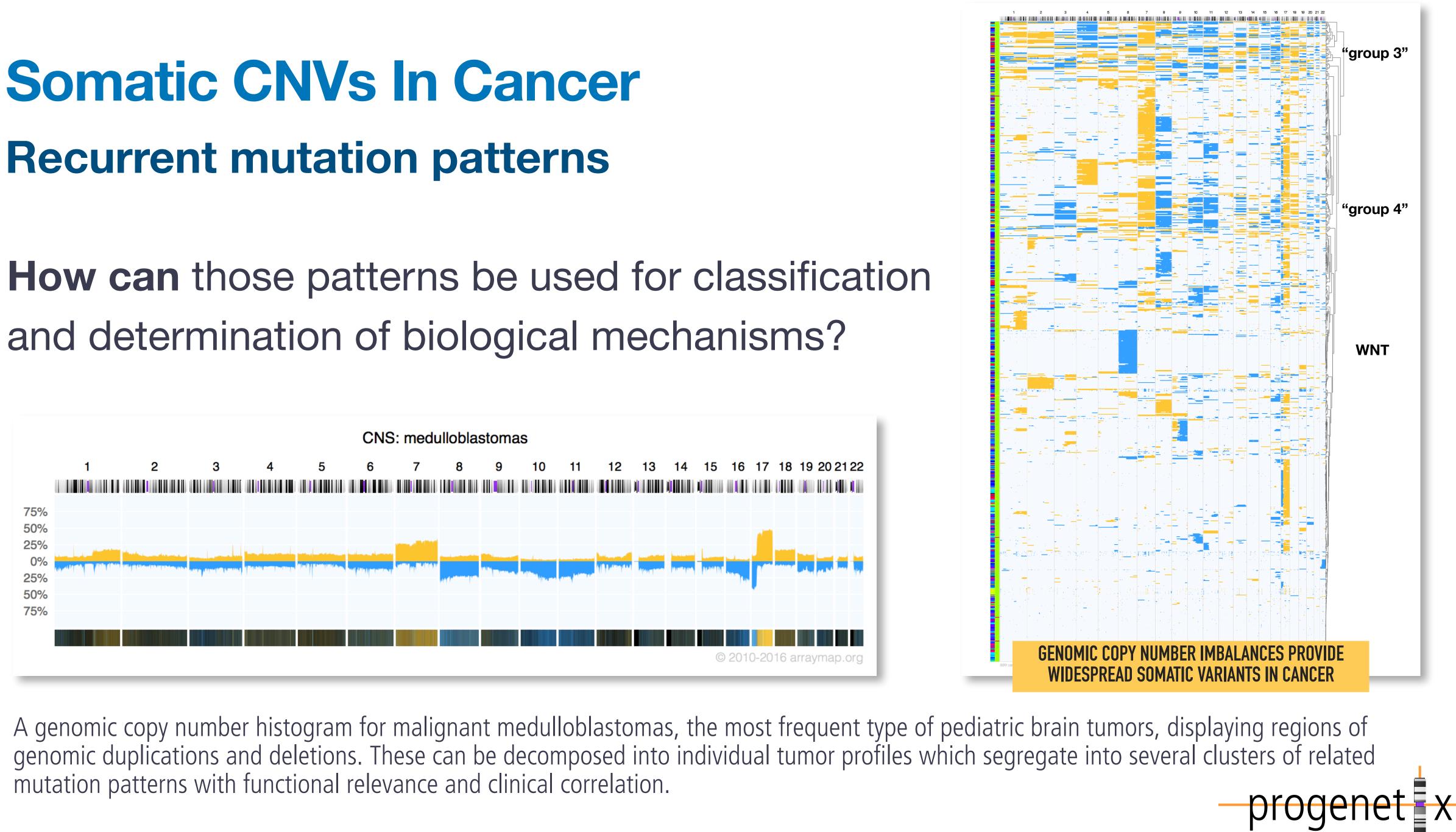


docs.genomebeacons.org



Progenetix and GA4GH Beacon Implementation driven development of a GA4GH standard


Gain of chromosome arm 13q in colorectal carcinoma


deletion in a Glioblastoma

low level/high level copy number alterations (CNAs)

Somatic CNVs In Cancer Recurrent mutation patterns

Cancer Genomics Reference Resource

- open resource for curated oncogenomic profiles
- >116'000 cancer CNV profiles, from >800 types
- majority of data from genomic arrays with ~50% overall from SNP platforms with original data reprocessing
- standardized encodings (e.g. NCIt, ICD-O 3)
- identifier mapping for PMID, GEO, Cellosaurus, TCGA, cBioPortal where appropriate
- core biosample and technical metadata where accessible (TNM, sex, survival ...)
- publication database and code mapping Services

Cancer CNV Profiles

ICD-O Morphologies ICD-O Organ Sites Cancer Cell Lines **Clinical Categories**

Search Samples

arrayMap

TCGA Samples 1000 Genomes **Reference Samples** DIPG Samples cBioPortal Studies Gao & Baudis, 2021

Publication DB

Genome Profiling Progenetix Use

Services

NCIt Mappings **UBERON** Mappings

Upload & Plot

Beacon⁺

Documentation

News Downloads & Use

Cases

Sevices & API

Baudisgroup @ UZH

Cancer genome data @ progenetix.org

The Progenetix database provides an overview of mutation data in cancer, with a focus on copy number abnormalities (CNV / CNA), for all types of human malignancies. The data is based on *individual sample data* from currently **142063** samples.

Floor of the Mouth Neoplasm (NCIT:C4401)

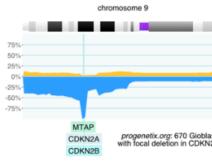
Download SVG | Go to NCIT:C4401 | Download CNV Frequencies

Example for aggregated CNV data in 126 samples in Floor of the Mouth Neoplasm. Here the frequency of regional copy number gains and losses are displayed for all 22 autosomes.

Progenetix Use Cases

Local CNV Frequencies \mathscr{O}

A typical use case on Progenetix is the search for local copy number aberrations - e.g. involving a gene - and the exploration of cancer types with these CNVs. The [Search


Page] provides example use cases for designing queries. Results contain basic statistics as well as visualization and download options.


Cancer CNV Profiles *I*

The progenetix resource contains data of 834 different cancer types (NCIt neoplasm classification), mapped to a variety of biological and technical categories. Frequency profiles of regional genomic gains and losses for all categories (diagnostic entity, publication, cohort ...) can be accessed through the [Cancer Types] page with direct visualization and options for sample retrieval and plotting options.

Cancer Genomics Publications

Through the [Publications] page Progenetix provides **4164** annotated references to research articles from cancer genome screening experiments (WGS, WES, aCGH, cCGH). The numbers of analyzed samples and possible availability in the Progenetix sample collection are indicated.

Cancer Genomics Reference Resource

- open resource for curated oncogenomic profiles
- >116'000 cancer CNV profiles, from >800 types
- majority of data from genomic arrays with ~50% overall from SNP platforms with original data reprocessing
- standardized encodings (e.g. NCIt, ICD-O 3)
- identifier mapping for PMID, GEO, Cellosaurus, TCGA, cBioPortal where appropriate
- core biosample and technical metadata where accessible (TNM, sex, survival ...)
- publication database and code mapping services

Cancer CNV Profiles

Search Samples

Studies & Cohorts

arrayMap

TCGA Samples **DIPG** Samples Gao & Baudis, 2021

Cancer Cell Lines

Publication DB

Genome Profiling Progenetix Use

Services

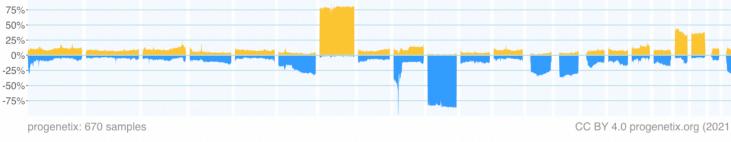
NCIt Mappings

UBERON Mappings

Upload & Plot

Download Data

Beacon⁺


Progenetix Info

About Progenetix Use Cases

Documentation

Baudisgroup @ UZH

Search **Modify Query** Samples Assembly: GRCh38 Chro: 9 Start: 21500001-21975098 End: 21967753-22500000 Type: DEL Filters: NCIT:C3058 progenetix **Found Variants** Samples: 668 UCSC region Visualization options (.pgxseg) 🗹 🕕 JSON Response 🗹 Variants: 286 All Sample Variants **Calls:** 675 (.json) 🗹 🕕 All Sample Variants (.pgxseg) 🗹 🕕 Show Variants in UCSC 🗹 🚯 Biosamples Biosamples Map Variants Results 6 7 8 9 10 11 12 13 14

Matched Subset Codes 🕕	Subset Samples	Matched Samples	Subset Match Frequencies 🚯
UBERON:0002021	4	1	0.250
icdot-C71.4	4	1	0.250
icdom-94403	4291	664	0.155
NCIT:C3058	4375	664	0.152
UBERON:0016525	14	2	0.143
icdot-C71.1	14	2	0.143
UBERON:0000955	7068	651	0.092
icdot-C71.9	7066	651	0.092
icdom-94423	84	4	0.048
NCIT:C3796	84	4	0.048
UBERON:0001869	1712	14	0.008
icdot-C71.0	1712	14	0.008

Cancer Genomics Reference Resource

- open resource for curated oncogenomic profiles
- >116'000 cancer CNV profiles, from >800 types
- majority of data from genomic arrays with ~50% overall from SNP platforms with original data reprocessing
- standardized encodings (e.g. NCIt, ICD-O 3)
- identifier mapping for PMID, GEO, Cellosaurus, TCGA, cBioPortal where appropriate
- core biosample and technical metadata where accessible (TNM, sex, survival ...)
- publication database and code mapping services

progenet

Cancer CNV Profiles

Search Samples

Studies & Cohorts

arrayMap

TCGA Samples DIPG Samples

Gao & Baudis, 2021

Cancer Cell Lines

Publication DB

Genome Profiling Progenetix Use

Services

NCIt Mappings **UBERON** Mappings

Upload & Plot

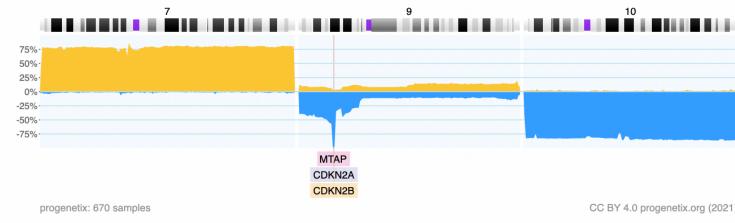
Download Data

Beacon⁺

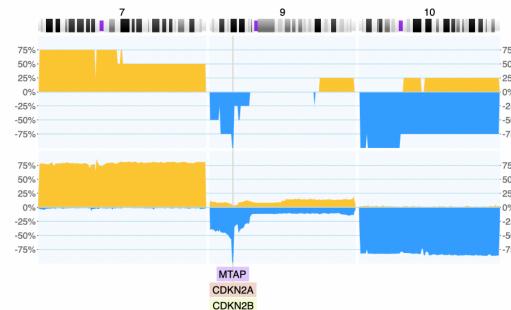
Progenetix Info

About Progenetix

Use Cases


Documentation

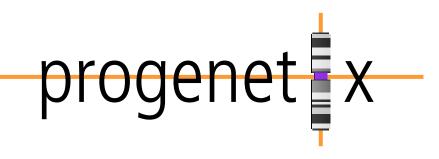
Baudisgroup @ UZH


Data visualization (668 samples)

Chromosomes 🚯			Random Samples (no.) 🚯			
7,9,10						
Plot Grouping 🚯	Min. Sam	nples p	er Group 🚯	Min. Interval Fraction 🕕		
NCIT Neoplasm Code 🛛 🗸 🗸	2			0.00001		
Left Labels Width (px)	Sample L	ine He	ight (px)	Sample Label (px)		
200	10			8		
Histogram Height (px) 🚯	Histogra	m Max.	. Scale (%) 🚯	Cluster Tree Width (px) 🚯		
100	100			50		
Select Gene Label			Free Labels 🔒			
CDKN2B (9:22002903-22009313)	×					
MTAP (9:21802636-21867081) ×						
CDKN2A (9:21967752-21995324)	×	~				

Plot Data

Open Histogram


.50%

pg x

DX Ontologies

Example: Hierarchical NCIt Neoplasm Core replaces heterogeneous primary annotations

- heterogeneous and inconsistent diagnostic annotations are common in clinical reports and research studies ("text", ICD-10, ICD-0 3, OncoTree, domain-specific)
- highly variable granularity of annotations as major road block for large scale data integration
 - "Colorectal Cancer" or "Rectal Mucinous Adenoca."
- initiatives and services such as Phenopackets, MONDO, OXO ... rely on and/or provide mappings to hierarchical ontologies
- consistent CURIEs were instrumental in the development & testing of the Beacon v2 "Filters" paradigm
 - ► final "Filtering Term" object dev. by Tim Beck, U. of Leicester

NClt Neoplasm Core coded display (excerpt) for samples in the Progenetix cancer genome data resource allows sample selection on multiple hierarchy levels →

Collapse all Expand

All

Subsets	Sai
✓ NCIT:C3262: Neoplasm	888
✓ NCIT:C3263: Neoplasm by Site	847
✓ NCIT:C156482: Genitourinary System Neoplasm	116
 NCIT:C156483: Benign Genitourinary System Neoplasm 	219
 NCIT:C4893: Benign Urinary System Neoplasm 	90
 NCIT:C4778: Benign Kidney Neoplasm 	90
NCIT:C159209: Kidney Leiomyoma	1
NCIT:C4526: Kidney Oncocytoma	82
NCIT:C8383: Kidney Adenoma	7
 NCIT:C7617: Benign Reproductive System Neoplasm 	129
 NCIT:C4934: Benign Female Reproductive System Neoplasm 	129
 NCIT:C2895: Benign Ovarian Neoplasm 	58
NCIT:C4510: Benign Ovarian Epithelial Tumor	58
NCIT:C40039: Benign Ovarian Mucinous Tumor	58
NCIT:C4512: Ovarian Mucinous Cystadenoma	58
NCIT:C4060: Ovarian Cystadenoma	58
NCIT:C4512: Ovarian Mucinous Cystadenoma	58
✓ NCIT:C3609: Benign Uterine Neoplasm	71
 NCIT:C3608: Benign Uterine Corpus Neoplasm 	71
NCIT:C3434: Uterine Corpus Leiomyoma	71
 NCIT:C156484: Malignant Genitourinary System Neoplasm 	111
 NCIT:C157774: Metastatic Malignant Genitourinary System Neoplasm 	2
 NCIT:C146893: Metastatic Genitourinary System Carcinoma 	2
NCIT:C8946: Metastatic Prostate Carcinoma	2
 NCIT:C164141: Genitourinary System Carcinoma 	105
 NCIT:C146893: Metastatic Genitourinary System Carcinoma 	2
NCIT:C8946: Metastatic Prostate Carcinoma	2
NCIT: C2967: Fallonian Tubo Caroinoma	10

NCIT:C3867: Fallopian Tube Carcinoma

Samples
88844
84747
11616
219
90
90
1
82
7
129
129
58
58
58
58
58
58
71
71
71
11171
2
2
2
10561
2
2
19

Ontologies and Classifications

Services: Ontologymaps (NCIt)

V

The **ontologymaps** service provides equivalency mapping between ICD-O and other classification systems, notably NCIt and UBERON. It makes use of the sample-level mappings for NCIT and ICD-O 3 codes developed for the individual samples in the Progenetix collection.

NCIT and ICD-O 3

While NCIT treats diseases as **histologic** and **topographic** described entities (e.g. **NCIT:C7700**: **Ovarian adenocarcinoma**), these two components are represented separately in ICD-O, through the Morphology and Topography coding arms (e.g. here 8140/3 + C56.9).

More documentation with focus on the API functionality can be found on the documentation pages.

The data of all mappings can be retrieved trough this API call: {JSON 7}

Code Selection 🕕

NCIT:C4337: Mantle Cell Lymphoma			\sim

Optional: Limit with second selection

Matching Code Mappings {JSON7}

NCIT:C4337: Mantle Cell Lymphoma	pgx:icdom-96733: Mantle cell lymphoma	pgx:icdot-C77.9: Lymph nodes, NOS
NCIT:C4337: Mantle Cell Lymphoma	pgx:icdom-96733: Mantle cell lymphoma	pgx:icdot-C18.9: large intestine, excl. rectum and rectosigmoid junction
NCIT:C4337: Mantle Cell Lymphoma	pgx:icdom-96733: Mantle cell lymphoma	pgx:icdot-C42.2: Spleen

More than one code groups means that either mappings need refinements (e.g. additional specific NCIT classes for ICD-O T topographies) or you started out with an unspecific ICD-O M class and need to add a second selection.

In Progenetix all cancer diagnoses are coded to both NCIt neoplasm codes and ICD-O 3 Morphology + Topography combinations. The matched mappings are provided as lookupservice since neither an official ICD-O ontology nor such a "disease defined by ICD-O M+T" concept is codified anywhere.

List of filters recognized by different query endpoints

Public Ontologies with CURIE-based syntax

CURIE (Code/Ontology	Examples
NCIT	NCIt Neoplasm ¹	NCIT:C27676
HP H	HPO ²	HP:0012209
PMID N	NCBI Pubmed ID	PMID:18810378
geo l	NCBI Gene Expression Omnibus ³	geo:GPL6801, geo:GSE19399, geo:GSM491153
arrayexpress	EBI ArrayExpress ⁴	arrayexpress:E-MEXP-1008
	Cellosaurus - a knowledge resource on cell lines ⁵	cellosaurus:CVCL_1650
UBERON	Uberon Anatomical Ontology ⁶	UBERON:0000992
cbioportal d	cBioPortal ⁹	cbioportal:msk_impact_2017

Private filters

Since some classifications cannot directly be referenced, and in accordance with the upcoming Beacon v2 concept of "private filters", Progenetix uses additionally a set of structured non-CURIE identifiers.

For terms with a pgx prefix, the identifiers.org resolver will

Filter prefix / local part	Code/Ontology	Example
pgx:icdom	ICD-O 3 ⁷ Morphologies (Progenetix)	pgx:icdom-81703
pgx:icdot	ICD-O 3 ⁷ Topographies(Progenetix)	pgx:icdot-C04.9
TCGA	The Cancer Genome Atlas (Progenetix) ⁸	TCGA-000002fc-53a0-420e-b2aa- a40a358bba37
pgx:pgxcohort	Progenetix cohorts ¹⁰	pgx:pgxcohort-arraymap

Cancer Genomics Reference Resource

- open resource for curated oncogenomic profiles
- >116'000 cancer CNV profiles, from >800 types
- majority of data from genomic arrays with ~50% overall from SNP platforms with original data reprocessing
- standardized encodings (e.g. NCIt, ICD-O 3)
- identifier mapping for PMID, GEO, Cellosaurus, TCGA, cBioPortal where appropriate
- core biosample and technical metadata where accessible (TNM, sex, survival ...)
- publication database and code mapping services

Cancer CNV Profiles

Search Samples

Studies & Cohorts

arrayMap

TCGA Samples

DIPG Samples

Gao & Baudis, 2021

Cancer Cell Lines

Publication DB

Genome Profiling Progenetix Use

Services

NCIt Mappings UBERON Mappings

Upload & Plot

Download Data

Beacon⁺

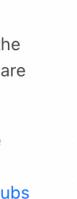
Progenetix Info

About Progenetix

Progenetix Publication Collection

The current page lists articles describing whole genome screening (WGS, WES, aCGH, cCGH) experiments in cancer, registered in the Progenetix publication collection. For each publication the table indicates the numbers of samples analysed with a given technology and if sample profiles are available in Progenetix.

Please contact us to alert us about additional articles you are aware of. The inclusion criteria are described in the documentation \mathscr{O} .

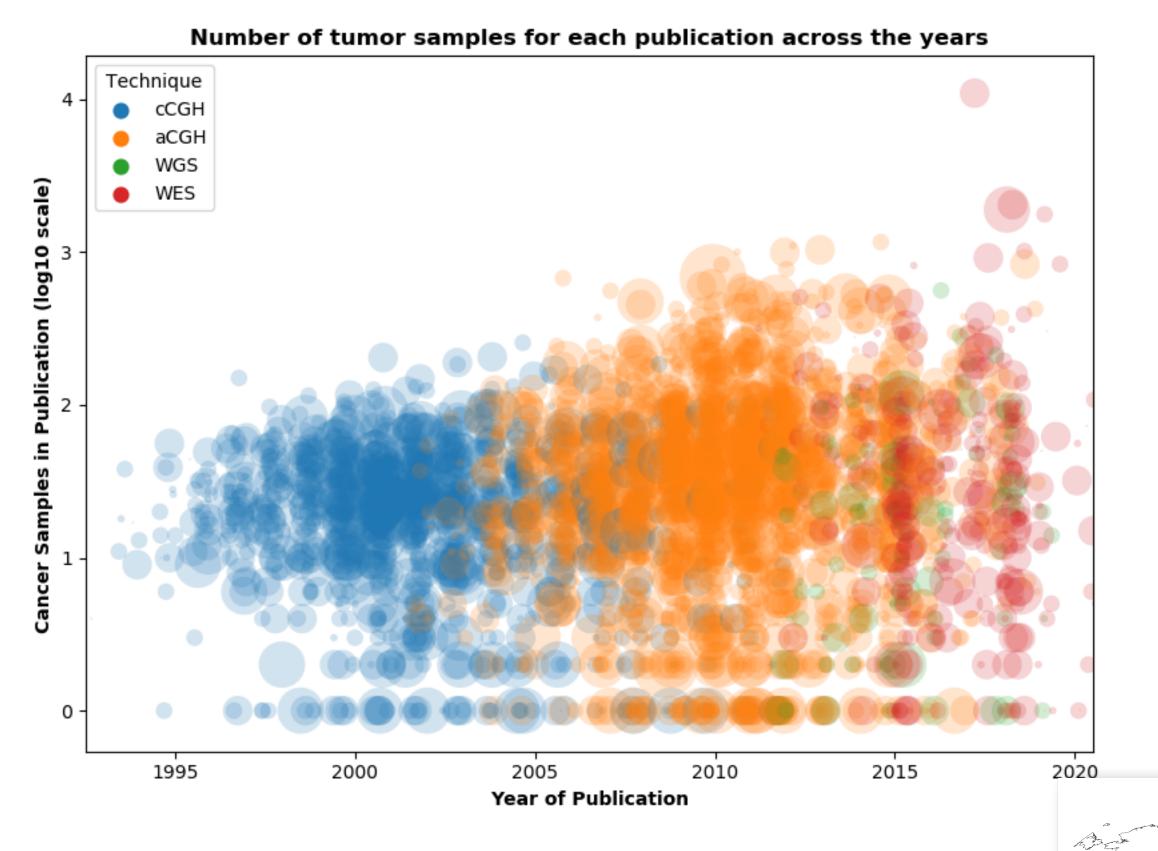

New Oct 2021 You can now directly submit suggestions for matching publications to the oncopubs repository on Github \mathscr{O} .

Filter	City 🕒		
	Type to search	~	

Publications (3349)		Samples			
id 🛾 🗸	Publication	cCGH	aCGH	WES	WGS
PMID:34604048	Dai J, Jiang M, He K, Wang H, Chen P et al. (2021) DNA Damage Response and Repair Gene Alterations Increase Tumor Mutational Burden and Front Oncol 🔽	0	0	122	0
PMID:34573430	Juhari WKW, Ahmad Amin Noordin KB et al. (2021) Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins Genes (Basel)	0	0	0	7
PMID:34307137	Xu S, Li X, Zhang H, Zu L, Yang L et al. (2021) Frequent Genetic Alterations and Their Clinical Significance in Patients With Thymic Epithelial Front Oncol	0	0	0	123

0

0


Service: Publications **Location Mapping for Statistics and Discovery...**

- all publications are tagged for "best fit" geographic origin in order
 - 1. specific sample origin
 - 2. processing laboratory
 - 3. corresponding author
- enables searches for e.g. "all publications or samples in HCC from 2000km around Taipeh"
- handy utility for discovering locally performed research, partners...

http://progenetix.org/services/publications/?filters=genomes:>0&ISO3166alpha2=kr&output=map

Map of the geographic distribution (by first author affiliation) of the 104'543 genomic array, 36'766 chromosomal CGH and 15'409 whole genome/exome based cancer genome datasets.

The numbers are derived from the 3'240 publications registered in the Progenetix database.

Cancer CNV Profiles

Search Samples

Studies & Cohorts

- arrayMap
- TCGA Samples
- **DIPG Samples**
- Gao & Baudis, 2021
- Cancer Cell Lines

Publication DB

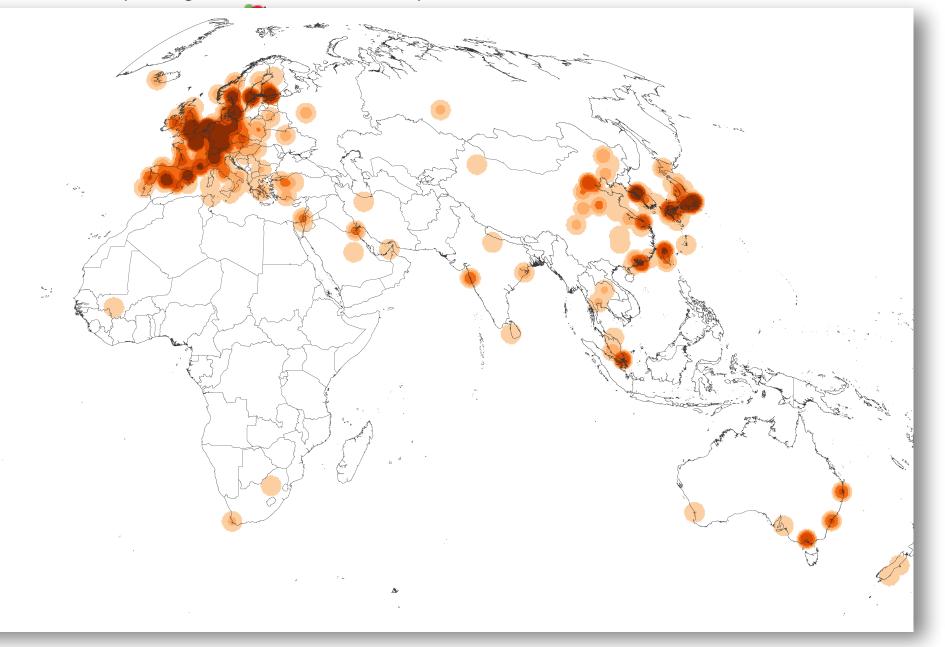
Services

NCIt Mappings

UBERON Mappings

Upload & Plot

Download Data


Progenetix Publication Collection

The current page lists articles describing whole genome screening (WGS, WES, aCGH, cCGH) experiments in cancer, registered in the Progenetix publication collection. For each publication the table indicates the numbers of samples analysed with a given technology and if sample profiles are available in Progenetix.

Please contact us to alert us about additional articles you are aware of. The inclusion criteria are described in the documentation \mathscr{O} .

Filter City		
	Type to search	~

Publications (33	24)	Samples		Samples		
id 🔒 🗸	Publication	cCGH	aCGH	WES	WGS	pg
PMID:34103027	Peng G, Chai H, Ji W, Lu Y, Wu S et al. (2021) Correlating genomic copy number alterations with clinicopathologic findings in 75 cases of BMC Med Genomics 🚬	0	79	0	0	0
PMID:34059130	Tsui DWY, Cheng ML, Shady M, Yang JL et al. (2021) Tumor fraction-guided cell-free DNA profiling in metastatic solid tumor patients	0	0	5	113	0

Kernel density of samples

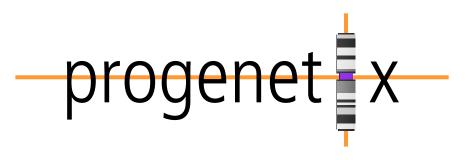
0.000628055

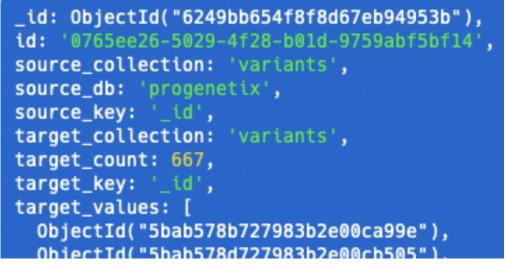
0.000628055 - 0.00251222 0.00251222 - 0.00628055 0.00628055 - 0.017585539 0.017585539 - 0.160154015

gx

- JavaScript front-end is populated for query results using asynchronous access to multiple handover objects
 - biosamples and variants tables, CNV histogram, UCSC .bed loader, .pgxseg variant downloads...
- the complete middleware / CGI stack is provided through the bycon package
 - schemas, query stack, data transformation (e.g. Phenopackets generation)...
- data collections mostly correspond to the main Beacon default model entities
 - no separate runs collection; integrated w/ analyses
 - ► *variants* are stored per observation instance

analyses




Entity collections

variants

Progenetix Stack

- *collations* contain pre-computed data (e.g. CNV frequencies, statistics) and information for all grouping entity instances and correspond to filter values
 - PMID:10027410, NCIT:C3222, pgx:cohort-TCGA, pgx:icdom-94703...
- *querybuffer* stores id values of all entities matched by a query and provides the corresponding access handle for **handover** generation

collations

geolocs

genespans publications

The Progenetix resource's API utilizes the bycon framework for data query and delivery and represents a custom implementation of the Beacon v2 API.

The standard format for JSON responses corresponds to a generic Beacon v2 response, with the meta and response root elements. Depending on the endpoint, the main data will be a list of objects either inside response.results or (mostly) in response.resultSets.results . Additionally, most API responses (e.g. for biosamples or variants) provide access to data using handover objects.

Progenetix Documentation

Documentation Home

Progenetix Source Code

bycon

progenetix-web

PGX

Additional Projects

News & Changes

Pages & Forms

Services & API

Use Case Examples

Classifications, Ontologies & Standards

Publication Collection

Data Review

Beacon+ & bycon

Technical Notes

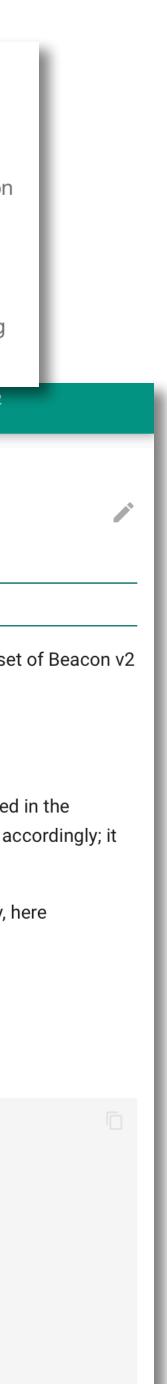
Progenetix Data

Baudisgroup @ UZH

Progenetix Source Code 1

With exception of some utility scripts and external dependencies (e.g. MongoDB Beacon-style JSON responses the software (from database interaction to website) behind Progenetix and Beaco

bycon


- Python based service based on the GA4GH Beacon protocol
- software powering the Progenetix resource
- Beacon⁺ implementation(s) use the same code base

pr	ogenetix	k-web		Beacon v2 Documentation	Q Search	🐱 beacon-v2 ☆2 ¥8
•	provides E implement	or Progenetix and its Beacon ⁺ implementation Beacon interfaces for the bycon server, as we ted as React / Next.js project his documentation tree here as mkdocs project	ell as other Progenetix sevices (e.g. the publicated progenetix sevices (e.g. the publicated publicated by the publicated publicated by the publicated publicated by the publi	Org.progenetix		
F	≡ Org.p	rogenetix	Q Search	Progenetix & Beacon+		
	ase /biosan			The Beacon+ implementation - developed in the Python paths for the Progenetix resource 🕒.	n & MongoDB based bycon project - impleme	nts an expanding s
_		QUERY oles?filters=cellosaurus:CVCL_0004 ople retrieves all biosamples having an annotation fo	or the Cellosaurus <i>CVCL_0004</i> identifier (K562)	Scoped responses from query object In queries with a complete beaconRequestBody the typ	-	
	tation olf and	es/pgxbs-kftva5c9 [:] a single biosample		requestedSchemas . So far, Beacon+ will compare the f doesn't matter if the endpoint was /beacon/biosample Below is an example for the standard test "small deletic responding with the matched variants. Exchanging the	es/ or /beacon/variants/ etc.	
ons.c		rMODE=TRUE es?testMode=true [:] some random samples	Shoutout to Laure(e)n Fromont & Manuel Rueda for being	• { "entityType": "biosample", "schema:": "ht would change this to a biosample response. The examp http://progenetix.org/beacon/variants/ or http:	ple ccan be tested by POSTing this as applic	
1	• /biosamp	g API responses }/g_variants oles/pgxbs-kftva5c9/g_variants/ of all variants from a single biosample	instrumental in the Beacon v2 documentation!	<pre>{ "\$schema":"beaconRequestBody.json", "meta": { "apiVersion": "2.0", "requestedSchemas": [{ "entityType": "genomicVariant" "apiversion": "100000000000000000000000000000000000</pre>		
	Sase /indivi			<pre>"schema:": "https://progenetix }] }, "query": { "requestParameters": {</pre>	x.org/services/schemas/genomicVariant"	

Rapidly evolving docu of both the Beacon AP its use and tech implementation docs.genomebeaco docs.progenetix

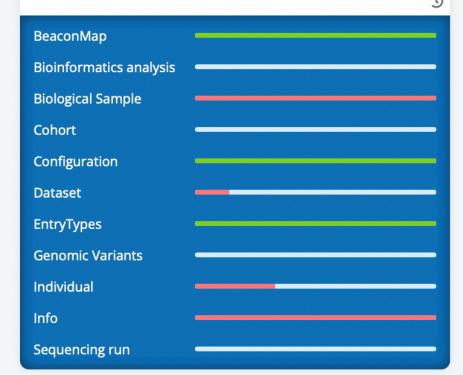

/individuale2filtere=NCIT:C7E41

Beacon API

Onboarding Demonstrating Compliance

- Progenetix Beacon+ has served as implementation driver since 2016
- Beacon v2 as service with protocol-driven registries for federation
- GA4GH approved Beacon v2 in April 2022

	EUROPEAN GENOME-PHENOME ARCHIVE	Centre for Genomic Regulation	
	Beacons: EUROPEAN Beacons: DECEMPENTING BEACONS: Progenet		VERSITY OF ICESTER
EUROPEAN GENOME-PHENOME ARCHIVE Visit us Contact us	European Genome-Phenome Archive (EGA) GA4GH Approval Beacon Test This <u>Beacon</u> is based on the GA4GH Beacon v2.0	 progenet X Wisit us Beacon UI Beacon API Contact us 	Theoretical Cytogenetics and Oncogenomics group at UZH and SIB Progenetix Cancer Genomics Beacon+ Beacon+ provides a forward looking implementation of the Beacon v2 API, with focus on structural genome variants and metadata based on the
BeaconMap Bioinformatics analysis Biological Sample Cohort Configuration Dataset EntryTypes Genomic Variants Individual Info Sequencing run		BeaconMap Bioinformatics analysis Biological Sample Cohort Configuration Dataset EntryTypes Genomic Variants Individual Info Sequencing run	
cnag	Centre Nacional Analisis Genomica (CNAG-CRG)	UNIVERSITY OF LEICESTER	University of Leicester


Beacon @ RD-Connect

Visit us

🛃 Beacon API

Contact us

This <u>Beacon</u> is based on the GA4GH Beacon v2.0

1	€"
BeaconMap	
Bioinformatics analysis	
Biological Sample	
Cohort	
Configuration	
Dataset	
EntryTypes	
Genomic Variants	
Individual	
Info	
Sequencing run	

Beacon v2.0

Cafe Variome Beacon v2

This Beacon is based on the GA4GH

🛃 Beacon UI

🛃 Beacon API

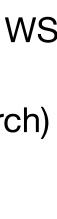
Contact us

2014 GA4GH founding event; Jim Ostell proposes Beacon concept with "more features... version 2"

2015	 beacon-network.org aggregator created by DNA stock 	
	DNAstack Beacon v0.3 release 	• B
2016	 work on queries for structural variants (brackets for fuzzy start and end parameters) 	p c e
2017	 OpenAPI implementation integrating CNV parameters (e.g. "startMin, statMax") 	• B
2018	 Beacon v0.4 release in January; feature release for GA4GH approval process GA4GH Beacon v1 approved at Oct plenary 	• B • B
2019	 ELIXIR Beacon Network 	· B a · "
2020		fi • d
2021		(ra

Beacon v2 Development

- Beacon⁺ concept implemented on
- rogenetix.org
- oncepts from GA4GH Metadata (ontologies...)
- ntity-scoped query parameters
- individual.age")
- Beacon+ demos "handover" concept
- eacon hackathon Stockholm; settling or "filters" arcelona goes Zurich developers meeting eacon API v2 Kick off
- dopting "handover" concept
- Scouts" teams working on different aspects -Iters, genomic variants, compliance ... iscussions w/ clinical stakeholders
- ramework + models concept implemented ange and bracket queries, variant length starting of GA4GH review process
- further changes esp. in default model, aligning with Phenopackets and VRS unified beacon-v2 code & docs repository Beacon v2 approved at Apr GA4GH Connect


Related ...

• ELIXIR starts Beacon project support

- GA4GH re-structuring (workstreams...)
- Beacon part of Discovery WS
- new Beacon website (March)
- Beacon publication at Nature Biotechnology

docs.genomebeacons.org

Beacon⁺

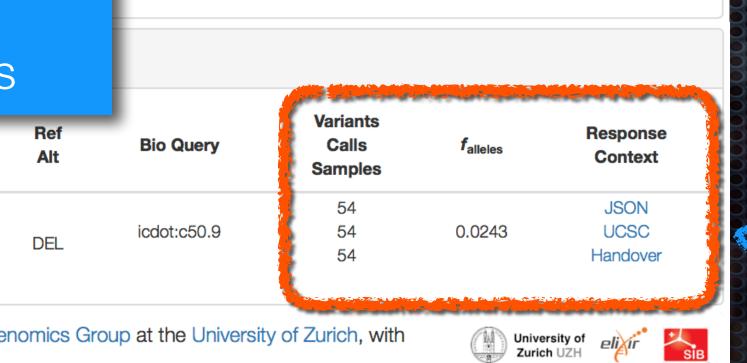
		• implementing e
his forward looking Beacon in	terface implements additional, pl	
Query		resources with
Dataset	toga	protocol
Dataset	tcga	
Reference name*	9	• e.g. TCGA can
Genome Assembly*	GRCh38 / hg38	(structural and
Start min Position*	19,500,000	
Start max Position	21,975,098	
End min Position	21,967,753	
End max Position	24,500,000	
Alt. Base(s)*	DEL	
Bio-ontology	icdot:c50.9: (4065)	\$
	and a second	The second se

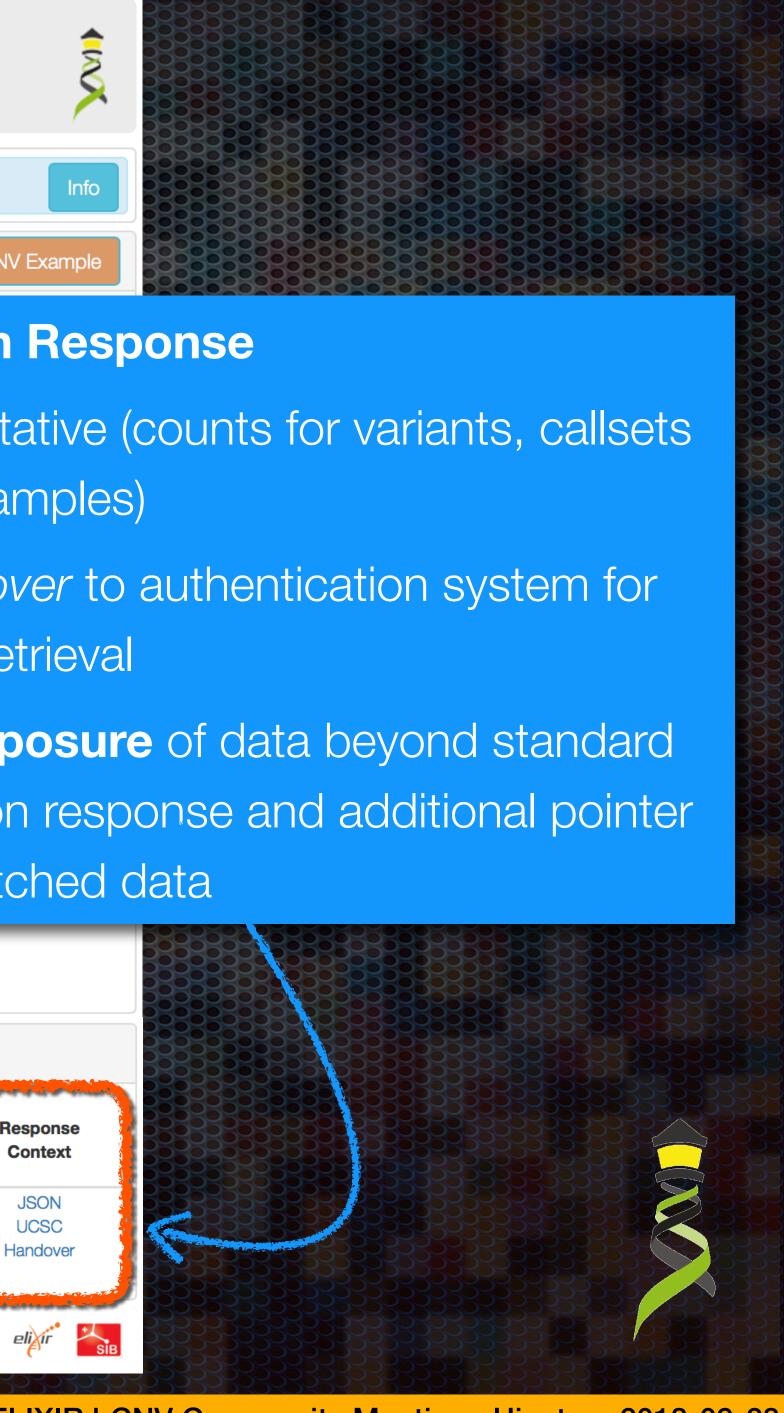
Prototyping Query Extensions

• testing e.g. bio-metadata queries using ontology terms

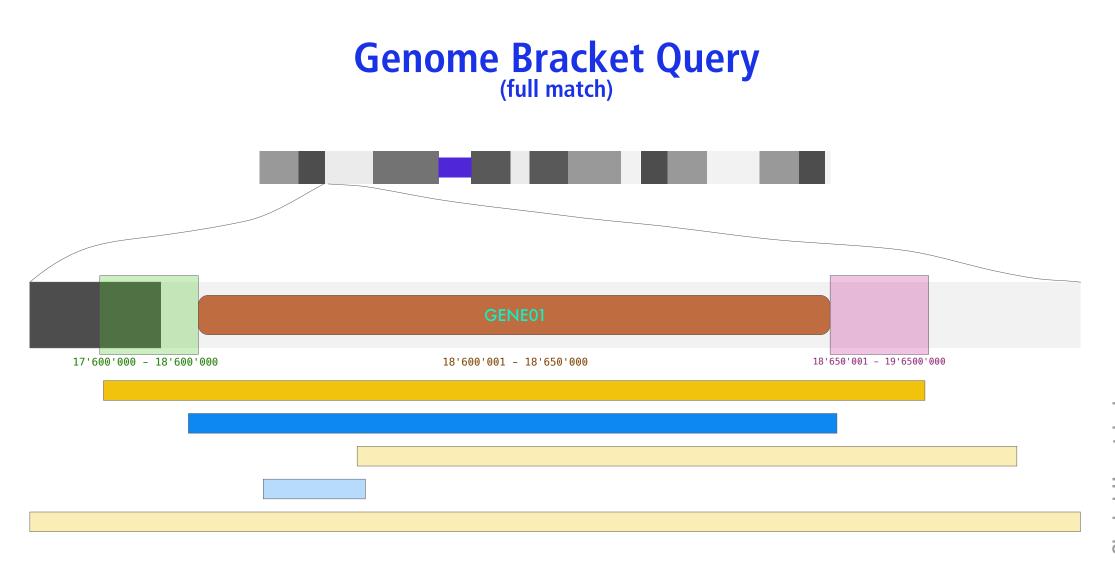
D	ataset	Assembly	Chro	Start Range	End Range	Pos
	tcga	hg38	9	19,500,000 21,975,098	21,967,753 24,500,000	
array	Map 🕂	progener		ementation is develope SIB Technology group	•	nal Oncogen

Beacon Implementations


existing Beacon


icer variants SNV)

Beacon Response


- quantitative (counts for variants, callsets and samples)
- Handover to authentication system for data retrieval
- **no exposure** of data beyond standard Beacon response and additional pointer to matched data

Progenetix in 2022 Variant and Metadata for Sample Discovery

- positional queries for genomic variants using the GA4GH Beacon protocol
- metadata queries (diagnoses, identifiers, clinical classes ...) using Beacon "filters"

Cancer CNV Profiles

Search Samples

Studies & Cohorts

arrayMap

TCGA Samples

DIPG Samples

Gao & Baudis, 2021

Cancer Cell Lines

Publication DB

Services

NCIt Mappings

UBERON Mappings

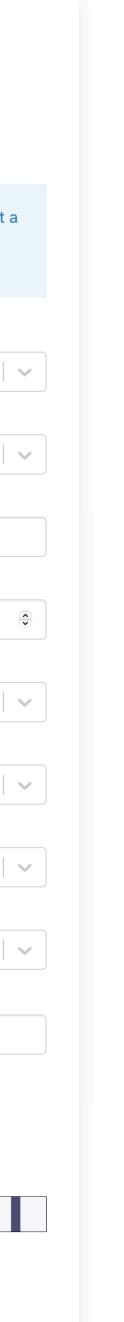
Upload & Plot

Download Data

Beacon⁺

Progenetix Info

About Progenetix


Use Cases

Documentation

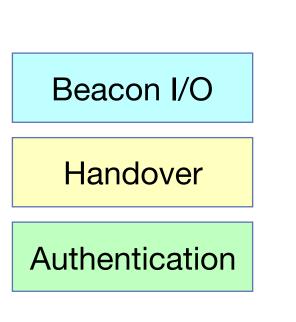
Baudisgroup @ UZH

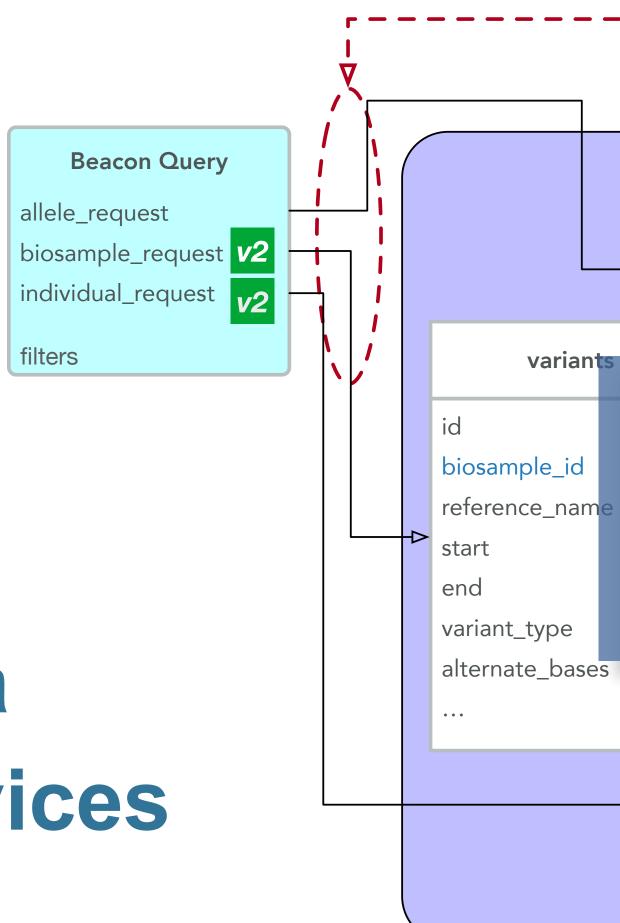
CDKN2A Deletion Example MYC Dup	lication	TP53	B Del. in Cell Lines	K-562 Cell Line	
🗱 Gene Spans 🗱 Cytoband(s)					
This example shows the query for CNV or single base, but limited to "highly focal" changing the position parameters or dia	hits (here i.e.				
Gene Symbol 🚯					
Select					
Chromosome 🕕			(Structural) Varian	t Туре 🚯	
9			DEL (Deletion)		
Start or Position 🚯			End (Range or Stru	ctural Var.) 🚯	
21500001-21975098			21967753-22500	0000	
Minimum Variant Length 🕕			Maximal Variant Le	ngth 🚯	
		•			
Reference ID(s) 🕕					
Select					
Cancer Classification(s)			Clinical Classes 🚯		
NCIT:C3058: Glioblastoma (4375) X	×	~	Select		
Genotypic Sex 🕕			Biosample Type 🚯)	
Select		~	Select		
Filters 🚯 🔗			Filter Logic 🚯		
			AND		
Filter Precision 🚯					
exact					
City 🚯					
Select		~			
Chromosome 9 🚯					
21500001_21975098					

Filter types

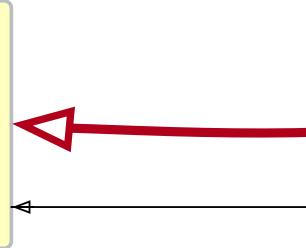
Ontology Filters

- Ο filter(s) and all descendent terms are queried
- **Exact term match** requests, where descendent terms are excluded, are supported \bigcirc
- Semantic similarity queries for entities that are associated with terms that are Ο similar to the requested filters are supported by Beacon 2.0
 - Agnostic to the semantic similarity model used by a Beacon
 - Relative similarity thresholds of *high*, *medium* and *low*
- Numeric Filters ... (using equality and relational operators)
- Alphanumeric Filters ... (e.g. string matches)




Hierarchical ontology query is assumed by default, where the requested ontology

Beacons v1.1 supports data delivery services



phenopackets

VCF

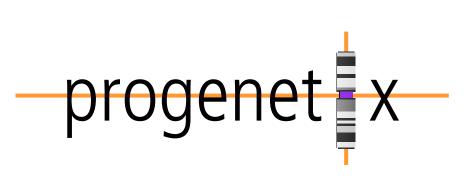
graphics

Michael Baudis

"• imple	biosamples id individual_id bioterms geo_provenance Mple data	ру Ве	eacon+	Beacon Response beacon_response handover_id
bea es	id bioterms geo_provenance	eneti	X.OGGove handover_id biosample_ids variant_ids individual_ids 	
				Authenticat

University of Zurich UZH

ELIXIR hCNV Community Meeting, Hinxton 2018-09-28


Beacon v2 Conformity and Extensions in Progenetix Putting the ⁺ into Beacon ...

- support & use of standard Beacon v2 PUT & GET variant queries, filters and meta parameters
 - variant parameters, geneld, lengths, EFO & VCF CNV types, pagination
 - widespread, self-scoping filter use for bio-, technical- and and id parameters with switch for descending terms use (globally or per term if using POST)
- extensive use of handovers
 - asynchronous delivery of e.g. variant and sample data, data plots
- + extensions of query logic
 - optional use of OR logic for filter combinations (global)
- + extension of query parameters
 - geographic queries incl. \$geonear and use of GeoJSON in schemas

• \neg (\neg \bigtriangledown) \neg no implementation of authentication on this open dataset (cc) (i)

Progenetix provides a number of additional services and output formats which are initiated over the / services path or provided as request parameters and are not considered **Beacon extensions (though they** follow the syntax where possible).

pgxRpi An interface API for analyzing Progenetix **CNV** data in R using the Beacon⁺ API

Beacon Path: Retrieve variants by biosample id(s)

https://progenetix.org/beacon/g_variants/ ?biosampleIds=pgxbs-kftvh94d,pgxbs-kftvh94g,pgxbs-kftvh972 &output=pgxseg

Beacon Path: Get biosamples by filter(s)

http://progenetix.org/beacon/biosamples/ ?filters=NCIT:C3697&output=datatable

Service Path: Retrieve CNV frequencies by filter(s)

http://www.progenetix.org/services/intervalFrequencies/ ?id=NCIT:C4323&output=paxsea

Author: Hangjia Zhao | @hangjiaz

README.md

pgxRpi

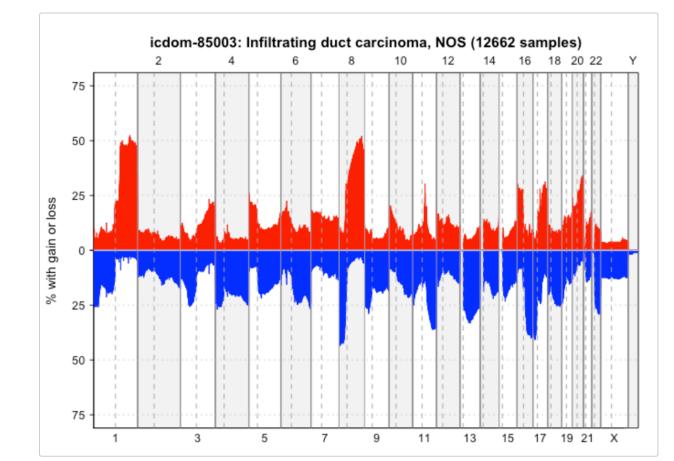
This is an API wrapper package to access data from Progenetix database.

You can install this package from GitHub using:

```
install.packages("devtools")
devtools::install_github("progenetix/pgxRpi")
```

If you are interested in accessing CNV variant data, get started from this vignette

If you are interested in accessing CNV frequency data, get started from this vignette

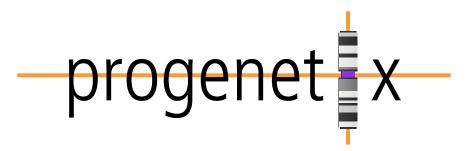

When you face problems, try to reinstall the latest version. If reinstallation doesn't help, please contact us.


variant_1 <- pgxLoader(type="variant", biosample_id = biosample_id)</pre>

biosamples <- pgxLoader(type="biosample", filters = "NCIT:C3059", codematches = TRUE,</pre> biosample_id = c("pgxbs-kftva5zv","pgxbs-kftva5zw"))

```
freq_pgxseg <- pgxLoader(type="frequency", output ='pgxseg',</pre>
                          filters=c("NCIT:C4038","pgx:icdom-85003"),
                          codematches = TRUE)
```

pgxFreqplot(freq_pgxseg, filters='pgx:icdom-85003')

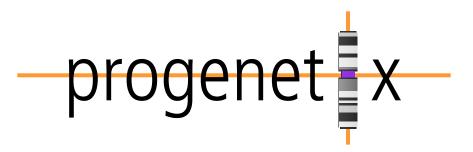


Beacon+: Phenopackets Testing alternative response schemas...

http://progenetix.org/beacon/biosamples/pgxbs-kftvhyvb/phenopackets

- the v2 default schemas are mostly aligned w/ Phenopackets v2
- creating phenopackets can be done mostly by re-wrapping of Beacon entities (individual, biosample)
- variants can be included through file resource URLs; in Beacon+ this is done through ad hoc handover URIs


```
"id": "pgxpxf-kftx3tl5",
                                                                          "biosamples": [
"metaData": {
                                                                             "biosampleStatus": {
  "phenopacketSchemaVersion": "v2",
                                                                               "id": "EF0:0009656",
  "resources":
                                                                               "label": "neoplastic sample'
                                                                              "dataUseConditions": {
      "id": "NCIT",
                                                                               "id": "DU0:0000004",
      "iriPrefix": "http://purl.obolibrary.org/obo/NCIT_"
                                                                               "label": "no restriction"
      "name": "NCIt Plus Neoplasm Core"
      "namespacePrefix": "NCIT",
                                                                             "description": "Primary Tumor",
      "url": "http://purl.obolibrary.org/obo/ncit/neoplasm-core.
                                                                             "externalReferences": [
      "version": "2022-04-01"
                                                                                 "id": "pgx:TCGA-0004d251-3f70-4395-b175-c94c2f5b1b81",
    },
                                                                                 "label": "TCGA case id"
 "subject": {
                                                                                 "id": "pgx:TCGA-TCGA-DD-AAVP",
                                                                                 "label": "TCGA submitter_id"
    "dataUseConditions": {
     "id": "DU0:000004",
      "label": "no restriction'
                                                                                 "id": "pgx:TCGA-9259e9ee-7279-4b62-8512-509cb705029c",
                                                                                 "label": "TCGA sample_id"
    "diseases": [
                                                                                 "id": "pgx:TCGA-LIHC",
        "clinicalTnmFinding": [],
                                                                                 "label": "TCGA LIHC project"
        "diseaseCode": {
          "id": "NCIT:C3099",
                                                                             "files": [
          "label": "Hepatocellular Carcinoma"
                                                                                 "fileAttributes": {
        "onset": {
                                                                                   "fileFormat": "pgxseg",
          "age": "P48Y9M26D"
                                                                                   "genomeAssembly": "GRCh38"
        "stage": {
                                                                                        "https://progenetix.org/beacon/biosamples/pgxbs-kftvhvvb/variants/?output=pgxseg
          "id": "NCIT:C27966"
          "label": "Stage I"
                                                                             "histologicalDiagnosis": {
                                                                               "id": "NCIT:C3099",
                                                                               "label": "Hepatocellular Carcinoma"
                                                                             "id": "pgxbs-kftvhyvb",
   "id": "pgxind-kftx3tl5",
                                                                             "individualId": "pgxind-kftx3tl5",
   "sex": {
                                                                             "pathologicalStage": {
      "id": "PAT0:0020001",
                                                                               "id": "NCIT:C27966",
      "label": "male genotypic sex"
                                                                               "label": "Stage I"
                                                                             },
   },
                                                                             "sampledTissue": {
   "updated": "2018-12-04 14:53:11.674000"
                                                                               "id": "UBERON:0002107",
   "vitalStatus": {
                                                                               "label": "liver"
      "status": "UNKNOWN_STATUS"
                                                                             "timeOfCollection": {
                                                                               "age": "P48Y9M26D"
                                                                             },
```



Beacon+: Phenopackets Testing alternative response schemas...

http://progenetix.org/beacon/biosamples/pgxbs-kftvhyvb/phenopackets

},

- the v2 default schemas are mostly aligned w/ Phenopackets v2
- creating phenopackets can be done mostly by re-wrapping of Beacon entities (individual, biosample)
- variants can be included through file resource URLs; in Beacon+ this is done through ad hoc handover URIs


```
"id": "pgxpxf-kftx3tl5".
                                                                          'biosamples":
"metaData": {
                                                                              'biosampleStatus": {
  "phenopacketSchemaVersion": "v2",
                                                                              "id": "EF0:0009656",
  "resources":
                                                                               "label": "neoplastic sample"
      "id": "NCIT",
                                                                              dataUseConditions": {
                                                                               "id": "DUO:000004",
       "iriPrefix": "<u>http://purl.obolibrary.org/obo/NCIT_</u>"
                                                                               'label": "no restriction'
       "name": "NCIt Plus Neoplasm Core"
       "namespacePrefix": "NCIT"
                                                                              description": "Primary Tumor",
              "http://purl.obolibrarv.org/obo/ncit
                                                                              'externalReferences":
"files":
```

```
"fileAttributes": {
  "fileFormat": "pgxseg",
  "genomeAssembly": "GRCh38"
```

```
"uri": "https://progenetix.org/beacon/biosamples/pgxbs-kftvhyvb/variants/?output=pgxseg"
```

```
"fileAttributes": {
     "onset": {
                                                                                "fileFormat": "pgxseg",
       "age": "P48Y9M26D'
                                                                                 'genomeAssembly": "GRCh38"
     "stage": {
      "id": "NCIT:C27966"
       "label": "Stage I"
                                                                           'histologicalDiagnosis":
                                                                             'id": "NCIT:C3099",
                                                                             "label": "Hepatocellular Carcinoma"
                                                                           "id": "pgxbs-kftvhyvb",
"id": "pgxind-kftx3tl5",
                                                                           "individualId": "pgxind-kftx3tl5",
"sex": {
                                                                           "pathologicalStage": {
  "id": "PATO:0020001",
                                                                            "id": "NCIT:C27966",
  "label": "male genotypic sex"
                                                                            "label": "Stage I"
                                                                          },
                                                                           "sampledTissue": {
"updated": "2018-12-04 14:53:11.674000"
                                                                            "id": "UBERON:0002107",
"vitalStatus": {
                                                                            "label": "liver"
  "status": "UNKNOWN_STATUS"
                                                                          },
                                                                          "timeOfCollection": {
                                                                            "age": "P48Y9M26D"
                                                                          },
```


Progenetix & Beacon+ A cancer genomics reference resource powered by GA4GH standards

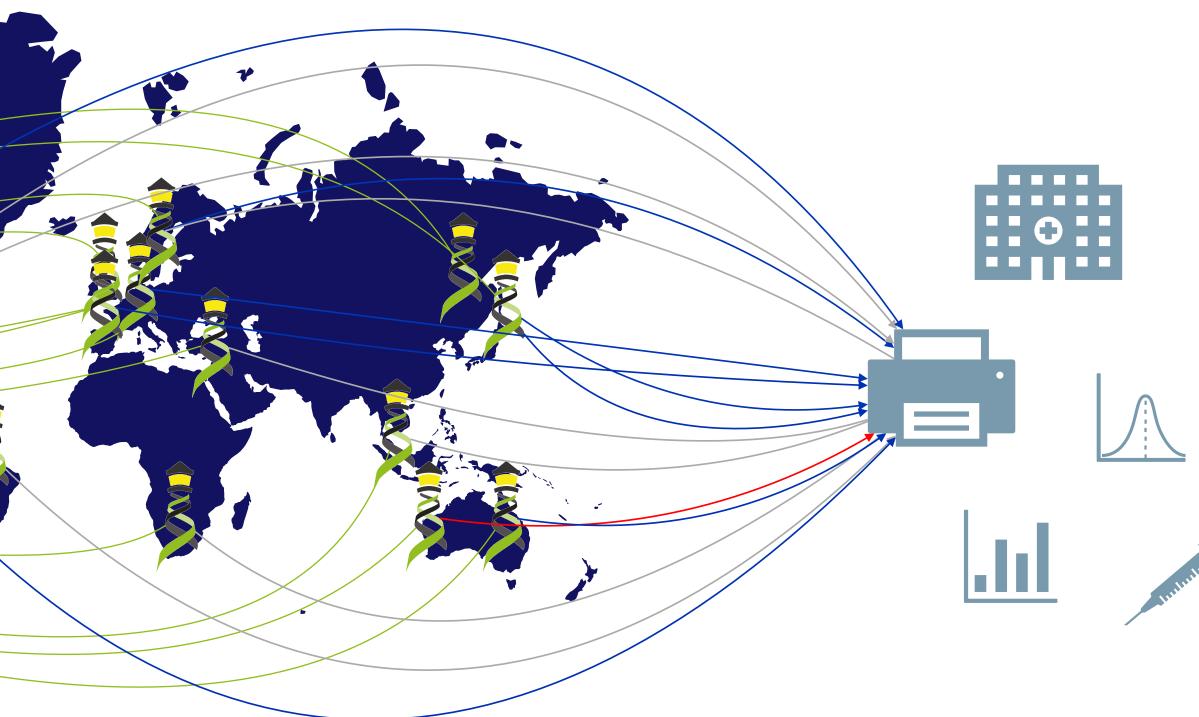
- Copy number variations constitute a complex, exciting and still poorly understood research topic in cancer and rare disease genomics
- Progenetix is the largest public resource for CNV in cancers (and increasingly reference genomes)
- The complexity of inherited and somatic genomic variations requires data access beyond individual resources => Federated Data Access
- The Global Alliance for Genomics and Health (GA4GH) is a policy-framing and technical standards-setting organization with focus on genomic data sharing
- Beacon v2 is the main GA4GH data discovery and sharing protocol, developed with support from the European bioinformatics organization ELIXIR
- Progenetix serves as a testbed for the early implementation of GA4GH standards such as Beacon extensions, Phenopackets and VRS

Beacon's v2.n Future? Some proposals for a stepwise Beacon protocol extension

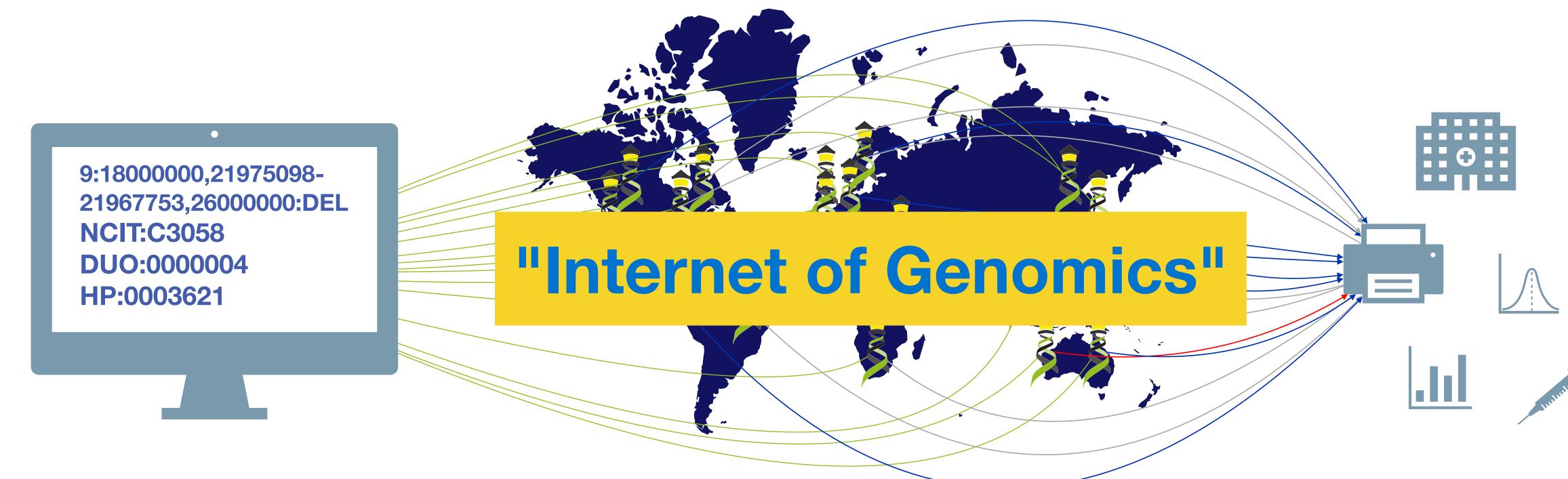
- Query language expansion, e.g. Boolean options for chaining filters use of heterogeneous/alternative annotations within and across resources
- **Phenopackets** support as a (the?) default format for biodata export
- Phenopackets as request documents
- Focus on service & resource discovery
- ELIXIR Beacon Network, including translations for federated queries to Beacon and Beacon-like resources

Have you seen this variant? It came up in my patient and we don't know if this is a common SNP or worth following up.

A Beacon network federates genome variant queries across databases that support the **Beacon API**


Here: The variant has been found in **few** resources, and those are from **disease** specific collections.

Have you seen deletions in this region on chromosome 9 in Glioblastomas from a juvenile patient, in a dataset with unrestricted access?


Beacon v2 API

The Beacon API v2 proposal opens the way for the design of a simple but powerful "genomics API".

Have you seen deletions in this region on chromosome 9 in Glioblastomas from a juvenile patient, in a dataset with unrestricted access?

Beacon v2 API

The Beacon API v2 proposal opens the way for the design of a simple but powerful "genomics API".

Jordi Rambla Arcadi Navarro **Roberto** Ariosa Manuel Rueda Lauren Fromont Mauricio Moldes Claudia Vasallo Babita Singh Sabela de la Torre Marta Ferri Fred Haziza

Juha Törnroos Teemu Kataja Ilkka Lappalainen **Dylan Spalding**

Tony Brookes Tim Beck Colin Veal Tom Shorter

Michael Baudis Rahel Paloots Hangjia Zhao Bo Gao

Augusto Rendon Ignacio Medina Javier López Jacobo Coll Antonio Rueda

centre nacional d'anàlisi genòmica	eli
centro nacional de análisis genómico Sergi Beltran	Serei
Carles Hernandez	Gary
	Gisel
	David
🕆 Inserm	
Institut national de la santé et de la recherche médicale	
David Salgado	
	Nicol
Barcelona Supercomputing	Mam
Center Centro Nacional de Supercomputación	Mbiy
Salvador Capella	Ziyaa
Dmitry Repchevski	
JM Fernández	•EU (
DisGeNET	David
DISCIENCE	Torre
Laura Furlong	
Janet Piñero	ח

The Beacon team

a Scollen aunders Kerry Lloyd

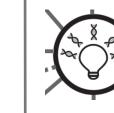
Mulder

na vanga

Parker

an

an Hartley



Fundación Progreso y Salud **CONSEJERÍA DE SALUD**

Joaquin Dopazo Javier Pérez J.L. Fernández Gema Roldan

Thomas Keane Melanie Courtot Jonathan Dursi

Heidi Rehm **Ben Hutton**

Toshiaki Katayama

Stephane Dyke

Marc Fiume Miro Cupak

Félanne<u>packets</u> Peter Robinson Jules Jacobsen

GA4GH VRS Alex Wagner Reece Hart

Beacon PRC

Alex Wagner Jonathan Dursi Mamana Mbiyavanga

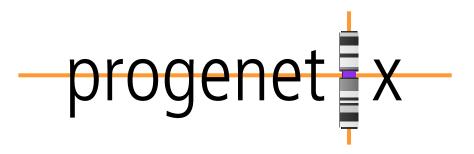
Alice Mann Neerjah Skantharajah

GEM Japan

Get Involved! Visit GA4GH.ORG

Become an Organizational Member ga4gh.org/members

Subscribe to GA4GH Updates ga4gh.org/subscribe



Progenetix Needs & Offers

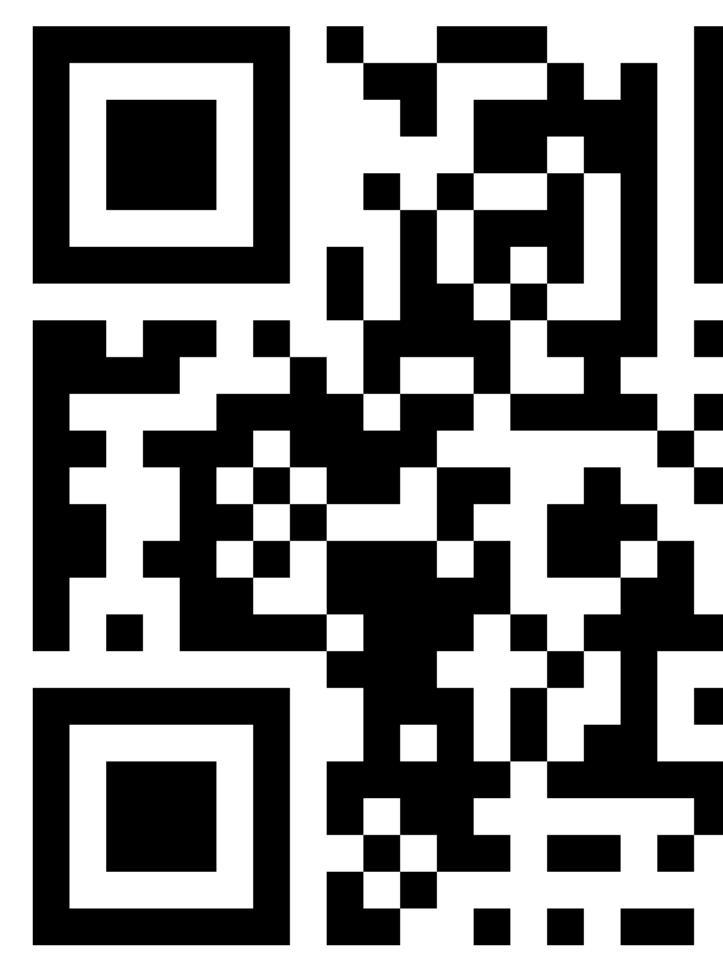
What we have ...

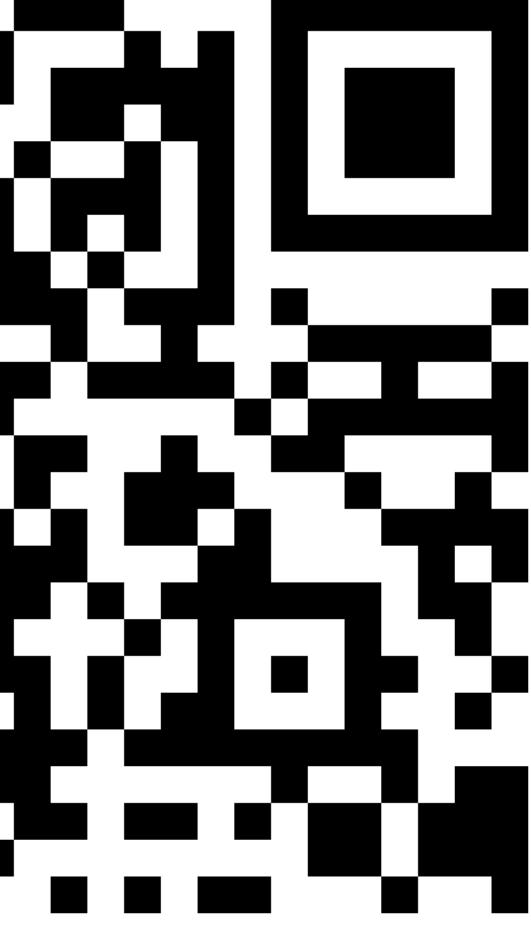
- \checkmark collection of >4000 articles assessed for scope (semi-)automated detection of additional articles training set for NLP & search engine generation \checkmark cancer specific ontologies with cross-mappings samples, geographies) generation of a complete ICD-O terminology tree (ICD-O vs. NCIt) based on >100k samples with NCIT (?) correspondence existing service API \checkmark metadata ontology mappings for some 10k improved service API & publication ➡ improved annotations using smarter source (article, samples, with varying coverage for grade / stage / survival / ... annotation files) pre-/processing
- \checkmark CNV profiles for >110k samples, >700 entities with correlation between individual profiles, profile heterogeneity and external parameters disease codes and metadata
- Cell line CNV profiles together with mapped variants with clinical evidences

info.baudisgroup.org | progenetix.org

What we're working on...

- for scope (genome screening technologies, cancer


 \rightarrow relation between cell lines and native tumor types, with consideration of non-CNV parameters and publication use


Universität Zürich ^{UZH}

info.baudisgroup.org

