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Cancer cell lines are frequently used in biological and transla-
tional research to study cellular mechanisms and explore treat-
ment options. However, cancer cell lines may display mutational
profiles divergent from native cancers or may be misidentified
or contaminated. We explored how similar cancer cell lines are
to native cancers to find the most suitable representations for
the corresponding diseases by utilising large collections of copy
number variation (CNV) profiles and applied machine learning
(ML) algorithms to predict cell line classifications.
Our results confirm that cancer cell lines indeed accumulate
more mutations compared to native cancers but retain similar
CNV profiles. We demonstrate that many relevant oncogenes
and tumor suppressor genes are altered by CNV events in both
cancers and their corresponding cell lines. Based on the simi-
larities between the two groups and the predictions of the ML
model, we provide some recommendations about cell lines with
good potential to represent selected cancer types in in vitro stud-
ies.
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Introduction
Derived from cellular samples of primary or recurring tu-
mors, hematopoietic neoplasias, or cancer metastases, can-
cer cell lines serve as tractable in vitro representations of hu-
man malignancies, enabling researchers to dissect cancer bi-
ology and evaluate potential therapeutic interventions. They
are popular models due to established handling procedures
and relatively low cost. To establish a cancer cell line, cells
are isolated from a native cancer - e.g. a solid tumor or bone
marrow in case of some lymphoid neoplasms. The ability of
many cancer cells to divide perpetually is exploited for prop-
agating them indefinitely for recurrent use in studies, poten-
tially over the course of decades. For example, the first cancer
cell line ever established, HeLa (1951) (1), is still one of the
most commonly used in vitro model systems.
Since the establishment of HeLa and besides individual cell
lines established in research projects and maintained at indi-
vidual institutions, thousands of cell lines have been made
available through commercial services, promising precise
matching of cell lines to disease types. Many fixed sets of
cell lines have been created to model different cancer types in
a consistent manner under experimental conditions, e.g. for
comparing drug activity or effects of targeted genetic modi-
fications. A widely used collection of cancer cell lines is the
NCI-60 panel that represents 9 distinct cancer types (2).
Cancer tissues are complex and genetically heterogeneous,

frequently comprising various clonal populations (3, 4). Ge-
nomic aberrations in cancers enable disease progression as
well as metastatic growth. A major class of these genomic
alterations are copy number variations (CNVs) where large
regions in the genomes have been modified by amplification
or deletion of a section. These CNV profiles are also can-
cer type specific, e.g. duplication of chromosome 13 in col-
orectal carcinomas (5–7). Moreover, genomic alterations in
cancers depend on the grade as well as the stage of the dis-
ease (3), suggesting different subtypes can be detected within
disease classification. For example, medulloblastomas have
four well known and characterized subtypes. Two of these
well-known subsets are based on the expression of Wnt and
Shh genes, the other two groups are "group 3" and "group 4"
since the biology behind these types is not clear (8).
Due to their restricted origin, cancer cell lines inherently
capture only a limited subpopulation of the original tumor’s
genetic diversity. This inherent limitation is further com-
pounded by the selective pressure exerted by in vitro cul-
ture conditions. In vitro systems also lack the crucial interac-
tions with other cell types that help shape neoplastic growths.
Therefore, under these disparate conditions, cancer cell lines
obtain novel features, such as bear a larger amount of copy
number alterations compared to primary cancers (9, 10).
In this study, we evaluated cancer cell lines of different types
and compared their profiles to their respective native cancer
types. We have used statistical and machine learning models
to detect CN patterns in both groups. We give an overview of
the genomic differences between cancers and their cell lines
and unravel the key differences in the genomic features of
the two groups. Based on these results, we suggest the best
available cell lines per diagnostic group.

Methods
Input Data. Cancer cell line CNV data used in this study
originates from cancercelllines.org- a knowledge resource for
cancer cell line variants. This database currently includes
5,600 individual CNV samples (11). Progenetix, our source
for native cancer samples includes over 140,000 cancer CNV
profiles (12). Following an initial analysis of cell line sam-
ples, a subset of 32 cancer types was chosen for further in-
vestigation. This selection was guided by the distribution of
representative samples within the cancer cell lines set.
To reduce the impact of samples with limited quality of their
CNV profiling data, all cell line samples were assessed visu-
ally and flagged. Native cancer samples without any detected
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segments were excluded from the dataset automatically. Both
native cancer and cell line samples labeled as Unspecified
Tissue (NCIT:C132256) were also excluded from the dataset.
A set of NCIT cancer types with a sufficient number of can-
cer cell line samples was used in the similarity assessment
and machine learning models (Supplementary Table A1).

Binning of CNV Call Values. To bring cell line and tumor
data to a uniform format, CNV data was transformed into
a binned matrix. All bins are of equal specified length and
represent an area in the genome. Inside each bin, CNV cov-
erages are calculated. Duplication and deletion coverages of
the bins are calculated separately. All CNV gains or losses
in a bin are counted and the fraction of CNVs covering the
bin are calculated. All bins with CNV gain fractions are then
saved into an array, followed by the bins with deletion cover-
age fractions. An open-source python package (bycon) was
used for bin calculations. Genomic intervals were then cal-
culated for different bin sizes: 1-10Mb. 5 Mb was selected
as bin size for further evaluations. The bin size of 5 Mb was
chosen to avoid biases to small and very large segments in
the genome.
Like genomic bins, CNV frequency maps can also be created
with the bycon package. The frequency maps show the occur-
rence of a CNV in all samples (%). For example, if all lung
carcinoma samples have a duplication in 8q, the frequency in
this region would be 100%. These frequencies are calculated
for all genome bins (length 1 Mb). Calculated frequencies
were then used for similarity assessments and visualizations.

CNV Coverage Calculation. CNV coverage of cell line and
tumor samples were retrieved from progenetix and cancer-
celllines databases. CNV coverage fraction is the amount of
the genome that is affected by structural variants (gains and
losses). To assess the levels of structural variants between
cell lines and tumors of the same cancer types, the average
CNV coverage fractions and subsequently fold changes be-
tween the two groups were calculated. Pre-calculated CNV
coverages for both groups are included in cancercelllines and
progenetix databases.

Cosine Similarity. Cosine similarity is a suitable measure
for bins with values between 0 and 1 due to its scale in-
variance, which ensures consistent comparison regardless of
vector magnitude. Its angle-based approach captures direc-
tional information, making it effective for assessing relative
proportions or relationships between values, particularly in
sparse datasets. Additionally, its normalized output provides
easy interpretation and comparison across different datasets
or dimensions. Pairwise cosine similarities between samples
were calculated to detect outliers and assess the similarity be-
tween instances of the same cell line. Additionally, similari-
ties between different cell lines as well as cell lines and native
cancers were determined. Cosine similarity was calculated
by using open source python package scikit-learn (Version:
1.2.2). To assess the overall similarity of cell line and native
cancer profiles, cosine similarities of CNV frequencies were
calculated.

Cosine Similarity(A,B) = A ·B
‖A‖ · ‖B‖

Supervised Machine Learning Algorithms. We trained
support vector machine (SVM) and random forest (RF) al-
gorithms on native cancer samples to be able to predict
cancer cell line diagnostic classifications based on the pro-
files of neoplasms. Python package scikit-learn (Version:
1.2.2) SVM classifier with rbf kernel and RF classifiers
(n_estimators=200) were used for training and prediction.
Data matrices with bin sizes from 1-10 Mb were tested and 5
Mb bin size selected for further use. To find the accuracy
of differentiating between cancer cell line and native can-
cer, equal numbers of neoplasia instances to cancer cell lines
were picked at random, as the number of neoplasia samples is
greater. To predict cell line diagnostic labels based on tumor
profiles, machine learning models were trained on selected
cancer types. Cancer types were chosen based on the number
of cell line samples available per NCIT classification term
and child terms of the types were included (Supplementary
Table A1). Testing size for both algorithms was 0.25 with
random_state=10.

Feature Importances. We utilized scikit-learn’s Permuta-
tionImportance to determine the contributions of each fea-
ture to predictions. The script fits a PermutationImportance
object to the dataset and computes feature importances using
permutation tests. Class feature importances ("Cell Line" and
"Tumor") were then calculated for both SVM and RF mod-
els. Feature importance results included training with "Cell
Line"- "Tumor" of equal numbers to identify general differ-
ences between all neoplasias and cell lines. We identified
features important for distinct cancer types by training the al-
gorithms on all cell line and neoplasia samples of the same di-
agnosis. The feature importances of RF model were used for
this analysis because of the inherent feature importance mea-
sures of the model and the ability to capture complex relation-
ships. Identified features were then mapped to the COSMIC
set of signature genes https://cancer.sanger.ac.
uk/signatures/downloads/ (last accessed 2023-08-
28) to identify relevant genes in these bins.

Matching Cell Lines with Cancer Subtypes. We parti-
tioned cancer data by using the K-means clustering algo-
rithm. Each cancer type (primary cancer samples only) was
partitioned into clusters using 2-20 number of clusters. Me-
dian sample of each cluster in the partitioned data was cal-
culated and the median sample of each cell line as well to
represent each group. Then, cosine similarity between the
medians was calculated. Only similarities equal to and above
0.7 were analyzed further.

Plotting and Visualization. All frequency maps and CNV
profile plots were created with progenetix/cancercelllines on-
line software tools and bycon package software. Other graphs
were created with python packages plotly, seaborn and mat-
plotlib.
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Results
Cancer cell lines display limited heterogeneity. A can-
cer cell line derived from a single source would exhibit min-
imal genetic variation within its population and within the
samples of the same cell line. Even though cancer cell
lines are not necessarily monoclonal, they still only repre-
sent a small subset of a tumor cell population. To deter-
mine the uniformity of the samples of the same cell line, we
performed pairwise similarity calculations for all cell lines
with at least 3 samples. Then, we compared computed in-
dices to CNV sample plots to ascertain the efficiency of the
measure by visual assessment. Figure 1 depicts 2 analyzed
cell lines: prostate small cell carcinoma cell line NCI-H660
(CVCL_1576) and lung adenosquamous carcinoma cell line
NCI-H596 (CVCL_1571). NCI-H660 is an example of a
largely homogenous cell line with all similarity scores above
0.7 and there is a visual congruence among the samples on
the CNV plot as well. NCI-H596 on the other hand portrays
2 distinct subsets that also brought about lower scores. Both
subsets exhibit high similarity within the group but diverge
from each other significantly. These results suggest that our
measure can accurately determine the similarity of individual
samples.
To disclose the homogeneity of the cell lines of a distinct
cancer type, we calculated pairwise similarities of all sam-
ples within the same cell line (at least 3 samples) and cancer
type (Supplementary Fig. A1). We demonstrate a quantifi-
able level of homogeneity in cell line samples for the major-
ity of cancer types. The average level of homogeneity across
these samples surpasses 0.6. Lower similarity was detected
for cervical carcinoma and fibrosarcoma cell lines. These re-
sults suggest that samples of the same cell line are overall rel-
atively homogeneous. To detect any outliers, we set the sim-
ilarity threshold within the same cell line to 0.6. This thresh-
old was set based on visual assessment of single sample plots
in combination with calculated similarity indices. Therefore
cell lines with at least one paired score below 0.6, would have
an outlier. 53% of the cell lines had at least one outlier and
only 2% diverged greatly with no similarities above thresh-
old. Overall, the data indicated limited variability between
the instances of the same cell line.

Cancer cell lines have higher CNV coverage compared
to tumors of the same cancer type. Studies in breast and
ovarian carcinoma cell lines have established that compared
to tumors, cell lines accumulate more mutations (9, 10). For a
systematic assessment of how cancer cell line genomes relate
to neoplasias, we compared the CNV coverage fractions of
both genomes. As expected, the CNV coverage in most can-
cer types was higher in cancer cell lines than in neoplasias
(Fig.2) with the average fold change of 2.6. The excep-
tion was fibrosarcoma where fold change was below 1 and
CNV coverage in tumors was greater. In chronic myeloge-
nous leukemia (CML) with BCR-ABL a 15-fold CNV frac-
tion change was detected. This could be due to most cell lines
being in the "blast phase" of CML when they acquire a higher
mutation load due to increased genomic instability (13). The

link between increased mutation load and blast phase be-
comes evident when considering the source of CML cell lines
used in research, e.g. a study by Drexler et al. (2000) where
most analyzed CML cell lines originated from patients in
blast crisis (14). Interestingly, all three highest fold change
values are in different types of leukemia, highlighting the
importance of genetic fusion events in many hematopoietic
leukemias. Another important fusion in leukemias is PML-
RARA in acute myeloid leukemia (AML) but a variety of
genes have been reported to be involved in gene fusions in
leukemias (15).

Native cancers are highly heterogeneous but exhibit
similar CNV profiles to cancer cell lines. It has been re-
ported that despite harboring a higher burden of CNVs com-
pared to their tissues of origin cancer cell lines remarkably
retain a similar CNV signature to native cancers (9, 10). To
systematically assess the concordance between neoplasia and
cell line samples, we calculated pairwise similarity scores
based on CNV coverage. Our analysis of the comparisons be-
tween cell lines and neoplasias, along with the internal con-
sistency of the neoplasia data set, revealed scores that were
lower than what we had anticipated.(Fig.3). Heterogeneity
was higher within neoplasia samples than in instances of dif-
ferent cell lines of the same cancer type (Fig. 3, Supple-
mentary Fig. A3). Standard deviations of similarities were
higher for neoplasias in all cancer types except acute myeloid
leukemia.
Pairwise comparisons of samples illustrate the heterogene-
ity but fail to reveal recurring patterns of similarity. There-
fore, we compared the CNV frequency maps of neoplasias
and corresponding cell lines. Frequency maps represent the
occurrence of CNVs in the dataset in percentages - indicat-
ing the presence of CNVs in the proportion of samples. We
calculated a similarity index based on CNV frequency data
of cell lines and neoplasias and found high similarity indices
for most cancer types (Supplementary Table A2). Clearly de-
tectable patterns emerge between cell lines and its native can-
cer upon visual inspection of frequency plots as well (Supple-
mentary Fig. A2). Our results confirm that both breast carci-
nomas and ovarian carcinomas exhibit similar CNV patterns
to their cell lines (9, 10). Even though melanoma has bee re-
ported as a highly heterogeneous disease (16, 17), it yielded a
high similarity score (Supplementary Table A2, Supplemen-
tary Fig. A2) indicating an overall good representation of
genomic patterns in aggregated cell line data.

Emerging cancer CNV patterns can be used to deter-
mine the origin of some cancer cell lines. Given the high
occurrence of characteristic CNV patterns in a cancer type,
our goal was to employ a method to forecast the diagnos-
tic classification of a cell line. For that we trained a sup-
port vector machine (SVM) model on the 32 cancer types
(Supplementary Table A1). In the evaluation of the model’s
performance we found that for some diagnostic groups the
CNV based diagnostic prediction was overall successful with
the best results observed for breast adenocarcinoma, glioblas-
toma and colorectal carcinoma (Supplementary Table A3).
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Fig. 1. CNV sample plots and similarity heatmaps for cell lines NCI-H660 (top) and NCI-H598 (bottom), indicating the regional coverage by copy number gains (yellow) and
losses (blue) for chromosomes 1-22. For each of the 2 cell lines 5 individual instances are shown to visualize similarities and differences in CNV events. Inter-sample CNV
cosine similarities are displayed on the right.

Fig. 2. Comparison of CNV coverage fractions between cell lines and patient derived samples from the same diagnostic groups. Fold change calculated per cancer type:
average CNV coverage of cell line samples/average CNV coverage of native cancer samples. Error bars represent standard errors.

We then applied the trained model to predict the diagnostic
classifications of our collection of cell line CNV profiles. The

prediction accuracies of the cell lines were largely similar to
testing - highest percentage of correctly predicted samples
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Fig. 3. Similarity heatmap of comparisons between cell lines and neoplasias. Each column shows average pairwise similarity for the cancer type: A - samples of different cell
lines, B - cell line samples vs neoplasia samples, C - neoplasia samples.

belonging to breast adenocarcinoma, glioblastoma and col-
orectal carcinoma. Interestingly, the percentage of correctly
predicted cell lines is higher for breast adenocarcinoma cell
lines than tumor-tumor predictions, indicating that these cell
lines are good representations of the majority of the disease.
On the contrary, while the testing accuracy was the highest
for acute myeloid leukemia (AML) (90.51%), the prediction
accuracy of AML cell lines was below 20%. In fact, the re-
sults for all leukemia types in our data sets revealed poor per-
formance. The fold change of CNV coverage was also the
highest among leukemias (Fig. 2), suggesting poor represen-
tation of the majority of native leukemia samples.

Co-occurrence of relevant cancer genes in features
important for class determination. To interpret the per-
formance of our machine learning model, we employed a fea-
ture importance analysis upon its implementation. This anal-
ysis identified the most significant regions within the genome
that contribute to the model’s classification capabilities.
Our initial objective was to examine whether any genomic
features could be identified as influential in classifying "neo-
plasia" or "cell line". Therefore, we collected all cell line
samples in our dataset and randomly picked the same num-
ber of neoplasia samples. This step ensured the same number
of samples to avoid introducing bias to our model. Distin-
guishing "neoplasia" from "cell line" with 89% accuracy, this
model also highlighted the most relevant features in the pro-
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Fig. 4. Frequency maps of all neoplasias and cancer cell lines. Blue - deletions, yellow - amplifications. Top 30 detected genes are shown.

cess (Fig. 4).
Next, we analyzed the important features in our selected
32 cancer types, by training our models with both cell line
and neoplasia samples and finding the features relevant for
each cancer type. Then, we matched identified features (ge-
nomic bins) with COSMIC cancer gene set, to identify any
underlying oncogenes or tumor suppressor genes in the re-
gion. Of all the identified features, 56% are duplications and
44% are deletions. We then sorted the features by includ-
ing only features with highest average values and that ex-
ist in at least 4 cancer types to have an overview of shared
relevant features in the cancer types (Fig. 5). 42 out of
50 top shared features are duplications, indicating that du-
plications carry more weight in class identification. Many
of these duplicated features include important genes such as
BRCA1, EGFR, MAPK1. Wildtype-BRCA1 is a tumor sup-
pressor gene and mutated BRCA1 increases risk for breast
and ovarian carcinoma (18). BRCA1 is detected as an impor-
tant feature for breast adenocarcinoma but not ovarian car-
cinoma (Fig. 5). EGFR- epidermal growth factor receptor,
is an oncogene that promotes tumor progression. Notably,
EGFR over-expression has been detected in lung adenocar-
cinomas but not in small cell lung carcinomas (SCLC) (19).
Duplications in EGFR in lung adenocarcinomas and SCLCs
are not marked as important features in our dataset. How-
ever, EGFR duplications are important features for determin-
ing breast adenocarcinoma sample types and breast cancers
are also known to express EGFR (Fig. 5) (19). Another po-
tent oncogene in cancers, particularly bladder carcinomas is
FGFR3 (20). Interestingly, FGFR3 deletions are highlighted
as important features for class detection in 5 cancer types,
including bladder carcinomas (Fig. 5).
Our results suggest that several relevant cancer genes are an
integral part for the determination of the class in our model.
These genes and features are present in both neoplasias and
cancer cell lines but at significantly higher levels in cell lines.
These high level CN changes in cancer cell lines make them

excellent models for studying the effects of these genes and
testing for possible pharmaceuticals.

Modeling Tumor Heterogeneity: The Utility of Cell
Lines. Cancers are heterogeneous diseases that consist of
multiple subsets. For example, medulloblastoma is a form
of brain cancer that includes several distinct subtypes with
characteristic mutational profiles (8). Another well-known
heterogeneous cancer type is melanoma (17) where a large
population of subclones have been detected (21). Based on
known intratumoral heterogeneity, we hypothesized that cer-
tain cell lines would more accurately represent the unique
molecular characteristics of specific cancer subsets. There-
fore, we partitioned our neoplasia data using K-means clus-
tering and picking the median sample of each cluster. We
then matched these cluster medians to median samples of cell
lines. Selecting the median sample allowed us to establish an
"average" representation for each group. Indeed, we were
able to match some subsets to some cell lines with high sim-
ilarity, including melanomas and lung small cell carcinomas.
For instance, Figure 6 displays a subset of lung small cell car-
cinoma tumor and cell line samples. We were able to iden-
tify three distinct cell lines that would be the best representa-
tions of this tumor subpopulation. Additionally, the subsets
of melanoma, colorectal carcinoma, glioblastoma and kidney
carcinoma matched with high similarity to several cell lines.

Selection of representative cell lines. Our analysis, uti-
lizing a SVM model trained on 32 distinct cancer types and
complemented by visual assessment of CNV profiles, has
yielded a shortlist of cell lines that serve as strong candidates
for faithfully representing primary neoplasia (Table 1). No-
tably, these cell lines were consistently predicted across all
32 cancer types within the SVM model, suggesting a broader
applicability rather than a specific subtype match. Out of all
32 cancer types analysed, we were able to determine candid
models for 15 types. The highest number of accurate models

6 | bioRχiv Paloots et al. |

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2024. ; https://doi.org/10.1101/2024.05.15.594310doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.15.594310
http://creativecommons.org/licenses/by/4.0/


DRAFT
Fig. 5. Known oncogenes and tumor suppressor genes important for class determination. Deleted genes are marked with blue and amplified genes with yellow.

Fig. 6. Clustered sample plots of similar cell line and neoplasia subset samples. Cell line samples are indicated in pink and neoplasia samples in black.

were identified for breast adenocarcinomas where prediction
accuracy was also the highest. We were also able to pinpoint
3 models for AML despite overall low prediction accuracy
for this cancer type.

Discussion
We analyzed the molecular variability of over 500 cell lines
(around 3,400 samples) using copy number variation profiles
data. Overall, different instances of the same cell line dis-
played mostly limited variability. Due to the shared origin
of these samples, this consistency in prediction is unsurpris-
ing. Higher similarity of different cancer cell lines of the
same type to each other may be due to cell lines originating
from a smaller clonal population and therefore being more

stable. This trade-off presents a key challenge: While sim-
plified models may offer stability and ease of analysis, they
inherently struggle to capture the full spectrum of disease het-
erogeneity.

Studies with cancer cell lines have demonstrated that genetic
drift occurs in cancer cell lines and significantly affects their
pharmacogenetic properties (22, 23). Our results suggest that
the heterogeneity of cancer cell lines is limited, especially
when compared to native cancers. However, further analyses
are required to determine the full scope of the genetic drift
in the cell lines. Additionally, as apparent genetic drift in
cancer cell lines can be the result of positive selection (22),
some level of heterogeneity is inevitable.

The results of this study confirm that cancer cell lines in-
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Table 1. Cell lines with good correspondence to native cancer types

Cancer Types Cell Lines
Acute Myeloid Leukemia KO52 (CVCL_1321), KG-1 (CVCL_0374), MV4-11 (CVCL_0064)
Breast Adenocarcinoma EFM-19 (CVCL_0253), ZR-75-1 (CVCL_0588), MDA-MB-134-VI (CVCL_0617), MDA-

MB-361 (CVCL_0620), CAL-148 (CVCL_1106), CAL-85-1 (CVCL_1114), CAMA-1
(CVCL_1115), COLO 824 (CVCL_1136), DU4475 (CVCL_1183), Evsa-T (CVCL_1207),
HCC1008 (CVCL_1244), HCC1143 (CVCL_1245), HCC1428 (CVCL_1252), HCC1500
(CVCL_1254), HCC1599 (CVCL_1256), HCC2218 (CVCL_1263), (CVCL_1267), HCC38
(CVCL_1270), MDA-MB-175-VII (CVCL_1400), MFM-223 (CVCL_1408), ZR-75-
30 (CVCL_1661), UACC-812 (CVCL_1781), UACC-893 (CVCL_1782), EFM-192A
(CVCL_1812), HDQ-P1 (CVCL_2067), JIMT-1 (CVCL_2077), KPL-1 (CVCL_2094), BT-
483 (CVCL_2319), VP229 (CVCL_2754), VP267 (CVCL_2755), OCUB-F (CVCL_3352),
HCC712 (CVCL_3378), SUM190PT (CVCL_3423), SUM44PE (CVCL_3424), MDA-MB-
468GFP (CVCL_DH83)

Colorectal Carcinoma COLO 320DM (CVCL_0219), SW403 (CVCL_0545), SW948 (CVCL_0632), LS1034
(CVCL_1382), NCI-H508 (CVCL_1564), SW1463 (CVCL_1718), SW626 (CVCL_1725),
COLO 201 (CVCL_1987), COLO 206F (CVCL_1988), WiDr (CVCL_2760)

Diffuse Large B-Cell Lym-
phoma

HT (CVCL_1290), OCI-Ly10 (CVCL_8795), OCI-Ly19 (CVCL_1878), Ri-1 (CVCL_1885),
SU-DHL-4 (CVCL_0539)), SU-DHL-5 (CVCL_1735)

Esophageal Carcinoma KYSE-140 (CVCL_1347), KYSE-150 (CVCL_1348), KYSE-270 (CVCL_1350), KYSE-30
(CVCL_1351), KYSE-510 (CVCL_1354), OE21 (CVCL_2661), OE33 (CVCL_0471)

Glioblastoma DK-MG (CVCL_1173), GaMG (CVCL_1226), SF295 (CVCL_1690), SNB-75 (CVCL_1706),
YKG-1 (CVCL_1796)

Head and Neck Squamous Cell
Carcinoma

SCC-25 (CVCL_1682), BICR 22 (CVCL_2310), CAL-27 (CVCL_1107)

Kidney Carcinoma 769-P (CVCL_1050), A-498 (CVCL_1056), A-704 (CVCL_1065), ACHN (CVCL_1067),
CAL-54 (CVCL_1111), VMRC-RCW (CVCL_1790), VMRC-RCZ (CVCL_1791), UM-RC-6
(CVCL_2741), KMRC-1 (CVCL_2983), KMRC-2 (CVCL_2984), SLR26 (CVCL_V612)

Lung Adenocarcinoma HCC1171 (CVCL_5126), HCC2450 (CVCL_5133), NCI-H1437 (CVCL_1472), NCI-
H1693 (CVCL_1488), NCI-H1993 (CVCL_1512), NCI-H2030 (CVCL_1517), NCI-
H2087 (CVCL_1524), NCI-H2291 (CVCL_1546), NCI-H650 (CVCL_1575), NCI-H820
(CVCL_1592), NCI-H920 (CVCL_1599), RERF-LC-KJ (CVCL_1654)

Lung Small Cell Carcinoma COR-L279 (CVCL_1140)
Lung Squamous Cell Carci-
noma

VMRC-LCP (CVCL_1788), LC-1/sq (CVCL_3008)

Melanoma C32 (CVCL_1097), C32TG (CVCL_2324), COLO 741 (CVCL_1133), COLO 829
(CVCL_1137), G-361 (CVCL_1220), Hs 936.T (CVCL_1033), HT-144 (CVCL_0318),
IGR-37 (CVCL_2075), Ma-Mel-36 (CVCL_A171), Malme-3M (CVCL_1438), SK-MEL-
1 (CVCL_0068), SK-MEL-103 (CVCL_6069), SK-MEL-19 (CVCL_6025), SK-MEL-
199 (CVCL_6104), SK-MEL-29 (CVCL_6031), SK-MEL-30 (CVCL_0039), UACC-257
(CVCL_1779), WM1193C (CVCL_C265), WM164 (CVCL_7928), WM1799 (CVCL_A341),
WM266-4 (CVCL_2765), WM3060 (CVCL_6796), WM3066 (CVCL_C270), WM3208V
(CVCL_L028), WM3248 (CVCL_6798), WM51 (CVCL_6995), WM852 (CVCL_6804),
WM902B (CVCL_6807)

Ovarian Carcinoma 59M (CVCL_2291), COV318 (CVCL_2419), FU-OV-1 (CVCL_2047), OVCAR-4
(CVCL_1627), PEO1 (CVCL_2686), PEO4 (CVCL_2690), PEO6 (CVCL_2691)

Pancreatobiliary Carcinoma SU.86.86 (CVCL_3881), Capan-1 (CVCL_0237)
Prostate Carcinoma NCI-H660 (CVCL_1576), VCaP (CVCL_2235)
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deed harbor a higher amount of CNVs compared to native
cancers but display CNVs shared with native cancers of the
same diagnosis (Supplementary Table A2, Supplementary
Fig. A2) (9, 10). The highest differences in CNV coverage
fold changes were detected for leukemias, CML in particu-
lar. Most cell lines currently in use for CML originate from
blast phase CML (13), explaining the large differences in the
genomes. Furthermore, this demonstrates that not all stages
of cancers are well represented in in vitro models.
We examined CNV samples of 32 different cancer types
and showed that neoplasias exhibit high molecular variability
(Fig. 3, Supplementary Fig. A3). A useful strategy in taking
advantage of cell lines would be to partition primary cancer
into subsets and match these subsets to cell lines by similar-
ity. For example, we successfully employed this strategy to
match lung small cell carcinoma subset to cell lines (Fig. 6).
The current model may not fully account for the significant
variations within different cancer types. By partitioning of
cancer types we can improve the identification of cell lines
that closely resemble specific tumor subtypes.
We demonstrated that the prediction of cell line’s disease
classification based on CNV patterns of native cancers was
highly accurate for breast adenocarcinomas, colorectal carci-
nomas and glioblastomas. Using ML algorithms to classify
cancers and cell lines also informs us about genomic features
important for classifications. We showed that several well-
known oncogenes and tumor suppressor genes might have
influenced the decision-making process (Fig. 5). We also
demonstrate that duplications are more important for class
determination than deletions.
In summary, despite the undeniable value of cancer cell lines
in elucidating tumor biology and propelling advancements in
precision medicine, the inherent genomic heterogeneity ob-
served in cancer samples and across individuals needs to be
accounted for. We provide a careful selection of the mod-
els corresponding best to the target disease to best capture
the genomic intricacies of cancers. Data to create neoplasia
subsets and match them to appropriate cell lines are avail-
able at Progenetix and cancercelllines.org resources. Future
steps in utilizing these resources could involve the creation of
software tools to enable dynamic comparisons of cancer cell
lines to native cancers.
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