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Cancer Genomics Reference Resource

• open resource for oncogenomic profiles


• over 150'000 cancer CNV profiles

• SNV data for some series (e.g. TCGA)


• more than 900 diagnostic types 
• inclusion of reference datasets (e.g. TCGA)

• standardized encodings (e.g. NCIt, ICD-O 3)

• identifier mapping for PMID, GEO, Cellosaurus, 

TCGA, cBioPortal where appropriate

• core clinical data (TNM, sex, survival ...)

• data mapping services

progenetix.org



What is a Gemomic Foundation Model?
• What are genomic foundation models? 

• Self-supervised on terabases of DNA 

• Predicts masked K-mers or next token 

• Produces dense embeddings transferable to variant effect, TF binding, etc. 

• Can we adapt such a model to real cancer WGS at scale?



Why Genomic Foundation Models?

Challenge How a foundation model possibly helps

Sparse functional lables
Self-supervised pre-training (MLM / next-token) harvests unlabeled 
genomes; downstream fine-tuning needs fewer labels.

Cross-study bias (caller / pipeline differences) Learns from the sequence context itself; a future dataset processed 
with a different caller lands in the same embedding space.

Finds hidden information between genome context and variants 
(captures long-range context information and handles variants 

uniformly)  

Transformer context ≥ 6 kb (NT) or 100 kb (Evo2); a single embedding 
pipeline covers SNVs, indels, and SV; learn subtle context–variant 
relationships

Imbalanced Sample size across tumour types
Transfer learning lets us: pre-train on pan-cancer WGS → fine-tune 
on rare cancers with as few samples



Landscape of current genomic AI
• Data: range from human to multi-species 

alignments. 

• Scale: parameter sizes vary widely, from 
86M to 7B. 

• Context length: handles sequences from 
128 bp to 10+ kb. 

• Pre-training tasks: primarily use masked 
language modeling (MLM) or next-token 
prediction to learn sequence patterns. 

• Downstream Applications: predicts variant 
effects, regulatory elements (promoters, 
enhancers), splice sites, and chromatin 
profiles.



Pipeline Overview



Dataset Overview
• Pan-Cancer Analysis of Whole Genomes (PCAWG) – an 

international WGS compendium of primary tumors and 
matched normals. 

• The PCAWG miniBAM collection comprises 1788 matched 
tumor-normal whole-genome pairs, each reduced to only the 
reads supporting called variants (SNVs ±10 bp, indels ±200 bp, 
SV breakpoints ±500 bp). 

• 25 organ systems: pancreas, prostate gland, brain/cranial 
nerves & spinal cord, liver, and hematopoietic & lymphoid 
(top 5) 

• 47 histological subtypes (ICD-O-3): Adenocarcinoma, 
Infiltrating duct carcinoma, Hepatocellular carcinoma, Clear 
cell adenocarcinoma, Medulloblastoma (top 5) 



Preprocessing 
• Input: a set of 6 kb DNA windows (one per variant) for both tumor and matched normal. 

• For each somatic variant 

• Tumor window: 3000 bp upstream + somatic‐alt allele + 3000 bp downstream 

• Matched-normal window: 3 000 bp upstream + normal/germline allele + 3 000 bp downstream.



Fine-tuning 
• Dual-Task Training: 

• Masked Language Modeling (MLM): randomly mask 15% of tokens in each sequence and train the model 

to predict them, as in standard self-supervision. This helps the model refine its understanding of DNA context 

and recover mutations. 

• Contrastive Pairing Task: use a contrastive loss to bring together the representations of tumor vs normal 

sequence from the same variant and push apart those from different variants. The model learns to recognize 

that tumors/normal from the same locus are inherently related while any two sequences from different loci 

should be distinct. 



Potential Downstream Applications
• Cancer Type Classification: Using the fine-tuned model’s embeddings, predict a tumor’s origin or 

subtype from its somatic mutation pattern. 

• Mutation Impact Scoring: Beyond classification, the fine-tuned model could serve as a general 
predictor of variant effect – e.g., outputting an embedding that correlates with pathogenicity impact.  

• Structural Variant Breakpoint Prediction: The model can be applied to detect or classify structural 
variants. For example, given a genomic region, the model might predict the likelihood of an SV 
breakpoint or distinguish true oncogenic rearrangements from artifacts. By training on known SV 
breakpoints (versus random genomic loci), the model’s attention to sequence context may help 
identify hotspots prone to breakage. It could also predict the partner sequence of a breakpoint by 
embedding similarity (e.g., pairing two break-ends that should join). 

• Multi-modal Integration (Future): While not covered in detail, these sequence embeddings could be 
combined with other data (gene expression, clinical features) for integrated models.



Future Steps & Challenges
• Will a model pre-trained on 1000G human genome data (germline genomes) transfer to somatic WGS?  

• Tumor mutations are out-of-distribution compared with healthy germline variation. 

• Is 6kb context enough? 

• SV break-ends ±5–10 kb; enhancer–promoter loops span >10 kb. 

• Class imbalance: 5 tumor types supply >50 % of samples → model could be biased toward these 
signatures. 

• Evaluation 

• Downstream tasks benchmarks. 

• Cross-reference validation and domain shift test.


