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Integrative genome-wide expression profiling
identifies three distinct molecular subgroups of
renal cell carcinoma with different patient
outcome
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Abstract

Background: Renal cell carcinoma (RCC) is characterized by a number of diverse molecular aberrations that differ
among individuals. Recent approaches to molecularly classify RCC were based on clinical, pathological as well as on
single molecular parameters. As a consequence, gene expression patterns reflecting the sum of genetic aberrations
in individual tumors may not have been recognized. In an attempt to uncover such molecular features in RCC, we
used a novel, unbiased and integrative approach.

Methods: We integrated gene expression data from 97 primary RCC of different pathologic parameters, 15 RCC
metastases as well as 34 cancer cell lines for two-way nonsupervised hierarchical clustering using gene groups
suggested by the PANTHER Classification System. We depicted the genomic landscape of the resulted tumor
groups by means of Single Nuclear Polymorphism (SNP) technology. Finally, the achieved results were
immunohistochemically analyzed using a tissue microarray (TMA) composed of 254 RCC.

Results: We found robust, genome wide expression signatures, which split RCC into three distinct molecular
subgroups. These groups remained stable even if randomly selected gene sets were clustered. Notably, the pattern
obtained from RCC cell lines was clearly distinguishable from that of primary tumors. SNP array analysis
demonstrated differing frequencies of chromosomal copy number alterations among RCC subgroups. TMA analysis
with group-specific markers showed a prognostic significance of the different groups.

Conclusion: We propose the existence of characteristic and histologically independent genome-wide expression
outputs in RCC with potential biological and clinical relevance.
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Background
Renal cell carcinoma (RCC) represents the most com-
mon malignancy arising in the adult kidney, with in-
creasing incidence and poor prognosis [1]. RCC can be
pathologically subdivided into different histological sub-
types [2] based on the microscopic phenotype and the
presence or absence of von Hippel-Lindau (VHL) gene

alterations. The most frequent histological subtype is
clear cell RCC (ccRCC), followed by papillary RCC
(pRCC) and chromophobe RCC (chRCC). Important
prognostic parameters for RCC involve tumor and nodal
stage [3].
In the search of critical genes, molecular studies iden-

tified several onco- and tumorsupressor gene candidates
that are mutated and/or located within frequently gained
and lost chromosomal regions of RCC [4-9]. Although
multiple genes and signaling pathways have been impli-
cated in renal cancer, VHL is the best characterized
driver mutation, as it is mutated in the majority of
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sporadic ccRCC [10]. Loss of function of the VHL pro-
tein (pVHL) in ccRCC culminates in the deregulation of
downstream target pathways that are important for un-
controlled cell proliferation and malignant progression
[11]. In addition to VHL, alterations of the genes MET,
FH and BHD are thought to be responsible for the de-
velopment of familial RCC [2]. The low mutation fre-
quencies reported for these genes in sporadic RCC
subtypes [12-14], however, suggest other genes and path-
ways being relevant for the vast majority of RCC.
Microarray technology is an efficient approach to get

comprehensive insights into individual and common
tumor type-specific expression patterns based on hun-
dreds of informative genes. Previous gene expression
analyses using DNA microarrays suggested that unsuper-
vised clustering combined with supervised learning
methods optimize the molecular (re)classification of
RCC to better predict cancer behavior. Distinct molecu-
lar expression profiles distinguishing between good and
bad prognosis in RCC were identified [15-26]. However,
the tumor samples were pre-selected according to histo-
logic, clinical or molecular criteria in most of these stud-
ies. As a consequence, attempts to interpret general
molecular strategies of RCC may have therefore been
concealed by the co-appearance of surrogate markers.
For example, although ccRCC is phenotypically and gen-
otypically clearly different from pRCC and chRCC, we
hypothesized that similar sets of common functional
capabilities may exist in these tumor subtypes character-
izable by the sum of molecular features occurring in
RCC, irrespective of any histologic, clinical or single mo-
lecular parameters.
To test this hypothesis, we applied unsupervised clus-

tering methods and integrated gene expression-, SNP
and tissue microarray data using two independent sets
of 146 and 254 RCC, respectively.

Methods
Renal cancer tissue, cell lines and nucleic acid extraction
Frozen primary RCC and tissue from RCC metastases
were obtained from the tissue biobank of the University
Hospital Zurich. This study was approved by the local
commission of ethics (ref. number StV 38–2005). All
tumors were reviewed by a pathologist specialized in
uropathology (H.M.), graded according to the Fuhrman
grading system and histologically classified according to
the World Health Organization classification [2]. All
tumor tissues were selected according to the histologi-
cally verified presence of at least 80% tumor cells. Total
RNA was extracted from 74 ccRCC, 19 pRCC, 2 chRCC,
2 mixed cc/pRCC and 15 metastases of ccRCC using the
RNeasy minikit (Qiagen, Hilden, Germany). The quality
of the RNA was measured using the Agilent Bioanalyzer
2100. DNA was extracted from 56 ccRCC, 13 pRCC and

69 matched normal renal tissues using the Blood and
Tissue Kit (Qiagen). Expression analysis was additionally
performed with RNA from 24 RCC cell lines, 6 cell lines
from RCC metastasis and 4 prostate cancer cell lines as
controls. All tumors and cell lines considered in expres-
sion and SNP-array experiments are listed in the supple-
mentary data (see Additional file 1: Table S1).

Microarrays and expression analysis
Reverse transcription of RNA, DNA labeling and
hybridization on HG-U133A High-Throuput Arrays
(Affymetrix, Santa Clara, USA) were performed at the
Broad Institute of MIT and Harvard Medical School
(Cambridge, MA, USA). Arrays were scanned using the
HT Scanner. Affymetrix GeneChip data was normalized
using MAS5 from Bioconductor [27] and log2-scaled.
Hierarchical clustering was done with TIGR MeV [28]
using Euclidian distance and average linkage. The identi-
fication of tumor type-specific biomarkers was per-
formed using SAM [29]. The most significant genes
were cross-checked in GENEVESTIGATOR [30] to re-
move probe sets that had absent calls across all samples.
GENEVESTIGATOR is an online platform based on a
high quality, manually curated database of microarray
experiments enabling gene expression and regulation
studies as well as the search for groups of genes sharing
similar expression patterns by means of clustering and
biclustering algorithms.
Generation and analysis of gene sets were performed

with the PANTHER (Protein Analysis Through Evolu-
tionary Relationships; http://www.pantherdb.org) Classi-
fication System database [31], by considering both,
PubMed & Celera, datasets. The global functional over-
view of 17,181 human genes was extracted from PAN-
THER by using its standard settings. According to the
developers, PANTHER is classifying all genes by their
function through consideration of published scientific
evidence and/or evolutionary relationships, therefore
being able to even predict a function also in the absence
of experimental evidence.
Affymetrix probe sets were identified for at least half

of the genes extracted from PANTHER. For each gene
set, a two-way hierarchical clustering of probe sets ver-
sus the complete set of expression arrays (146 arrays
shown in Additional file 1: Table S1) was run using
GENEVESTIGATOR. We selected up to four clusters
that best represented the overall array clustering in each
pathway (see Additional file 2: Figure S1 A-D). Finally, a
joint clustering of all probe sets from these clusters
resulted in the groupings described (Figure 1).

Statistical data validation of the three tumor groups
Random Forest and linear discriminant analysis were
calculated using packages random Forest [32] and MASS
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lda [33] of R version 2.11.1, respectively. The testing of
significance of variable selection was performed by
group label shuffling; meaning by calculating the prob-
ability of finding the same classification accuracy for
random groups with the same number of variables.
Therefore, group labels were shuffled randomly 500
times, each time random forest was calculated, the vari-
ables were sorted by relevance and the 4 best variables
were then used for recalculation of random forest with
same shuffled groups. Clustering was performed using
function hclust R version 2.11.1.

SNP array analysis and classification
Labeling and hybridization of extracted DNA on Genome
Wide Human SNP 6.0 arrays (Affymetrix) were performed
at the Broad Institute of MIT and Harvard Medical School
(Cambridge, MA, USA). Arrays were scanned using the
GeneChip Scanner 3000 7 G. Raw probe data CEL files
were processed with the R statistical software framework
using the array analysis packages from the aroma.affyme-
trix project [34]. Total copy number estimates were gener-
ated using the CRMAv2 method [35] including allelic
cross talk calibration, normalization for probe sequence
effects and normalization for PCR fragment-length effects.

Copy number segmentation was performed using the Cir-
cular Binary Segmentation method [36] implemented in
the DNA copy package available through the Bioconduc-
tor project. Normalized data plots including segmentation
results, oncogene map positions and known copy number
variations as reported in the Database of Genomic Var-
iants were generated with software packages developed for
the Progenetix project [37]. Map positions were refer-
enced with respect to the UCSC genome assembly hg18,
based on the March 2006 human reference sequence
(NCBI Build 36.1). Data from arrays with prominent
probe level noise after normalization were excluded before
proceeding with the evaluation of copy number imbal-
ances. Overall, 114 SNP 6.0 arrays (45 RCC and 69 normal
tissue samples) were used for final data processing.
For the generation of overall genomic imbalance pro-

files, probabilistic thresholds of 0.13/-0.13 were used for
genomic gains and losses, respectively. Microarray and
SNP data have been deposited in GEO under GSE19949.

Tissue microarray construction and
immunohistochemistry
We used two TMAs with tumor tissue from 27 and 254
RCC specimens, respectively. The samples were retrieved

Figure 1 Molecular subclassification of renal cell carcinoma. Two-way hierarchical clustering of Affymetrix gene expression microarray data of
146 samples against the 92 pathway-related genes. Blue: relative increase-, white: relative decrease of gene expression. The PANTHER “pathway”
affiliation of probe sets is indicated by colored barcode (right): green – “Inflammation”; pink – “Wnt”; orange – “Angiogenesis” and light blue –
“Integrin” (see also Additional file 3: Table S2). Note: None of the 4 groups is exclusively related to any of the “dominating pathways”.
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from the archives of the Institute for Surgical Pathology;
University Hospital Zurich (Zurich, Switzerland) between
the years 1993 to 2003. In addition to tumor stage and
Fuhrman grade, information about sarcomatoid differenti-
ation was also available for all tumors. Areas with sarco-
matoid differentiation were identified by one pathologist
(H.M.) and defined as described [38].
TMAs were constructed as previously described [39].

To sufficiently address tumor heterogeneity, we used 3
punches per tumor for the construction of the TMA
with 27 tumor samples. One biopsy cylinder per tumor
was regarded as sufficient for constructing the TMA
with 254 tumors. TMA sections (2.5 μm) on glass slides
were subjected to immunohistochemical analysis accord-
ing to the Ventana (Tucson, AZ, USA) automat proto-
cols. CD34 (Serotec Ltd. - clone QBEND-10, dilution
1:800), MSH6 (BD Biosciences – clone 44, dilution
1:500) and DEK (BD Biosciences – clone 2, dilution
1:400) stainings were performed and analyzed under a
Leitz Aristoplan microscope (Leica, Wetzlar, Germany).
Tumors were considered MSH6 or DEK positive if more
than 1% of tumor cells showed unequivocal nuclear ex-
pression. MVD was determined as previously described
[40]. Contingency table analysis and Pearson’s chi-square
tests were used to analyze the associations between pro-
tein expression patterns and clinical parameters. Overall
survival rates were determined according to the Kaplan–
Meier method and analyzed for statistical differences
using a log rank test. A Cox proportional hazard analysis
was used to test for independent prognostic information.
The statistics were performed with SPSS 18.0 for Win-
dows (SPSS Inc., Chicago; IL).

Results
Gene expression patterns split RCC into three molecular
groups
We chose PANTHER [31] to extract a standard overview
of the classification of 17,181 human genes by their func-
tion. PANTHER allocates 6,017 of these genes into 145
“superior pathways”. Four of these pathways involve more
than 150 genes (“Wnt” 497 genes, “Inflammation” 476
genes, “Angiogenesis” 354 genes, “Integrin” 365 genes),
others such as “Cysteine biosynthesis”, listed only one
gene.
We used the RNA extracted from 97 primary RCCs of

different pathologic parameters, 15 RCC metastases and
34 cell lines (see Additional file 1: Table S1), to identify
any gene expression patterns in pathways containing more
than 20 genes. For this purpose, we used the gene expres-
sion data obtained from Affymetrix HG-U133A arrays
and performed two-way hierarchical clustering with each
of those gene sets using GENEVESTIGATOR [30].
Only within the matrices of “Wnt”, “Inflammation”,

“Angiogenesis”, and “Integrin“, which included process-

related as well as downstream target genes as suggested
by PANTHER, we observed clearly distinguishable major
gene expression clusters. The most prominent gene ex-
pression clusters are highlighted in Additional file 2:
Figure S1 A-D and Additional file 3: Table S2. Interest-
ingly, no such differentiating gene expression patterns
were obtained through hierarchical clustering of the
genes of the remaining pathways (i.e. apoptosis or HIF-
signaling) which, according to PANTHER, contained less
than 150 genes (see Additional file 2: Figure S1 E).
We next asked for possible relations among the different

tumor groups and their specific gene expression patterns
as detected from the 4 “dominating pathways”. For this
purpose, we selected with GENEVESTIGATOR up to four
gene clusters from each of the four matrices encompass-
ing a total of 92 genes, which were most representative for
the overall clustering of the samples within each matrix
(see Additional file 2: Figure S1 A-D and Additional file 3:
Table S2) and combined them into a new matrix. Subse-
quent clustering of this matrix yielded four distinct groups
(Figure 1). Notably, the 92 genes represented only a small
percentage of genes involved in the suggested “dominating
pathways” (see Additional file 3: Table S2). Moreover,
many of them (such as MAPK, RHO, NOTCH, PDGF,
RAS, JUN, ARF, PIK3) also belong to other cancer-related
pathways. Importantly, as none of the four groups was
associated with any of those pathways (Figure 1 – color
coding bar, right), we preferred to subdivide the groups
into tumor groups “A”, “B”, “C” and “cell lines”. Table 1
shows the 97 RCC specimens subdivided in groups A, B
and C and characterized by tumor subtype, tumor stage
and nuclear differentiation grade. Most interestingly, pri-
mary RCC split into group A, B or C, irrespective of their
clinical characteristics (see also Additional file 1: Table S1).

Gene delineation for stable RCC stratification
To confirm that the expression status of our 4 groups is
specific, we profiled gene expression across 40 primary
RCC samples arbitrarily chosen from the three RCC
groups. Five independent hierarchical clusterings of these
samples across arbitrarily chosen and pathway independ-
ent probe sets as well as a clustering against all 22,000
probe sets of the Affymetrix array showed that group B
was clearly distinct from A and C. Notably, group A al-
ways appeared as a tight cluster within the C clad
(Figure 2A left and Additional file 4: Figure S2). These
findings confirmed the previous subgrouping of RCC
based on the selected 92 genes (Figure 1) and moreover
suggests the presence of genome wide, discrete and
group-specific gene expression signatures.

Identification of the best RCC group identifiers
By using SAM [29], at least a 2-fold change in the ex-
pression level was seen for more than 2,000 genes, with
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1,455 genes being higher and 715 genes being lower
expressed in group B compared to A/C, and 221 genes
positively and 11 genes negatively regulated in A versus
C.
The most differentially regulated genes between group

B and groups A/C were represented by 48 genes, with 16
low expressed in B but strongly expressed in A/C (8.7 –
5.7 fold change) and 32 transcripts abundant in B but
decreased in A/C (14.4 – 5.2 fold change) (Figure 2B;
Additional file 5: Table S3). Twenty-three genes clearly
distinguished groups A and C with 4 genes highly
expressed in C but not in A (14.3 – 2.5 fold change), while
19 were highly expressed in A but not in C (16.0 – 4.2 fold
change) (Figure 2C; Additional file 6: Table S4).

Statistical significance of the three RCC groups
The groups “A”, “B” and “C” were further investigated
towards accuracy and reproducibility of their classifi-
cation. Using Random Forest, classification accuracy
reached 96.94% if only four variables out of the
>22,000 measured genes were selected. The three
groups separated very well as only 3 of the 97 mea-
surements were misclassified under these conditions
(Figure 3A). To test whether these three groups are
outstanding, label shuffling of the groups and retrying
classification with the four best variables was per-
formed. Shuffled groups were analyzed for how often
the same or a better classification accuracy than the
original was achieved. Label shuffling considered that
clusters A, B and C each contained 49 individuals
and most “subtypes” in cluster A were ccRCC. There-
fore at least one third of A was occupied with randomly
selected ccRCC from B and C. 500 times label shuffling

and classification trials resulted in zero times same or bet-
ter classification accuracy (p< 0.002).

Integration of DNA copy number alterations (CNAs) to
the three RCC subgroups
In a first step, we analyzed genomic profiles of 45 RCC
and corresponding normal tissues using Affymetrix 6.0
SNP arrays. We extracted an overall summary of
detected genomic imbalances using Progenetix [37] and
compared them to the entire available dataset of 568
RCC in the Progenetix database at censoring time (see
Additional file 7: Figure S3A). Consistent with previous
CGH data [41], our results confirmed the overall com-
posite of CGH profiles in RCC.
In order to clarify whether our three RCC groups are

characterized by combinations and/or frequencies of
specific CNAs, we analyzed our groups using CNA data
from 36 RCC for which high quality SNP- and gene ex-
pression microarray data were available and allocated
and color coded with regard to Figure 1 (see also
Additional file 1: Table S1), 20 tumors in group A, 3 in
group B and 13 in group C (see Additional file 8: Table
S5). By displaying all CNAs mapped to 811 cytogenetic
bands (UCSC - hg18 cytogenetic mapping; chromosomes
1–22), all chromosomes were affected including the
known RCC subtype-specific genomic alterations 3p-, 5q
+(ccRCC) and 7+, 17+, 20+ (pRCC). This result is in line
with previous CGH data [41]. Notably, loss of 3p was
observed in all 3 groups and increased genomic derange-
ments were seen in groups B and C compared to group A
(see Additional file 7: Figure S3B).
Next, in order to identify the genes residing in minim-

ally affected CNAs that possibly also directly contribute
to the group-specific output signatures, we focused on

Table 1 Classification of two RCC sets and their clinical characteristics
RCC microarray set RCC TMA set

A B C A B C

N (%) N (%) N (%) N (total) N (%) N (%) N (%) N (total)

Histological ccRCC 48 (65) 16 (22) 10 (13) 74 39 (27) 66 (45) 41 (28) 146

subtype pRCC 1 (5) 6 (32) 12 (63) 19 0 17 (52) 16(48) 33

chRCC 0 1 (50) 1 (50) 2 0 7 (70) 3 (30) 10

cc/pRCC 0 0 2 (100) 2 - - - -

Tumor stage pT1/pT2 32 (52) 16 (26) 14 (22) 62 27 (28) 48 (51) 20 (21) 95

pT3/pT4 17 (49) 7 (20) 11 (31) 35 12 (14) 39 (45) 36 (41) 87

Fuhrman grade grade 1 3 (43) 1 (14) 3 (43) 7 1 (100) 0 0 1

grade 2 27 (63) 8 (19) 8 (19) 43 20 (36) 20 (36) 15 (27) 55

grade 3 18 (44) 12 (29) 11 (27) 41 16 (20) 44 (55) 20 (25) 80

grade 4 1 (17) 2 (33) 3 (50) 6 2 (4) 24 (47) 25 (49) 51

sarcomatoid yes nd nd nd 3 (7) 20 (43) 23 (50) 46

no nd nd nd 36 (26) 67 (48) 37 (26) 140

nd: not done due to limited tissue material.
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Figure 2 (See legend on next page.)
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tumor-specific genomic changes below 5 Mb which is
the approximate resolution limit for chromosomal losses
and gains obtained by chromosomal CGH [42]. We
found 126 different regions in our cohort varying be-
tween 0.5 kb to 5 Mb and encompassing 61 allelic gains
and 65 allelic losses (see Additional file 9: Table S6).
These chromosomal regions harbored coding regions of
a total of 769 genes. Interestingly, in contrast to large
chromosomal aberrations commonly detected by CGH
in public data sets, the genomic alterations <5 Mb could
not be linked to morphologically defined RCC subtypes.
By looking at all chromosomal changes occurring in our
RCC set, we found a unique cytogenetic “fingerprint”
characteristic for each tumor. Despite this uniqueness
we were able to allocate all RCC to one of the 3 groups
at the gene expression level (Figure 1).
Unsupervised hierarchical clustering of the 769 CNA-

affected genes (see Additional file 9: Table S6) against
the 40 arbitrarily selected primary RCCs (see chapter
“Gene delineation”) showed rather diffuse RCC clusters
(Figure 2A middle) indicating at first no direct linkage to
the three RCC signatures. However, as it was already
demonstrated with randomly, CNA non-affected, picked
gene sets (see Additional file 4: Figure S2), the 769
CNA-affected genes could eventually be assigned to the
three RCC groups, but only by knowing the three spe-
cific groups before clustering (Figure 2A right).

Molecular RCC grouping is an independent, survival-
associated prognostic factor
We finally asked whether RCC of the three groups could
also be classified by characteristic morphologies or spe-
cific expression patterns on the protein level. For this
purpose, we randomly selected 9 RCC from each of the
three respective groups (Figure 1) and placed them into
a small tissue microarray (TMA). A Hematoxylin/Eosin
stained TMA section was blindly evaluated by a patholo-
gist (H.M.). All nine tumors of group A were character-
ized by high microvessel density (MVD), whereas there
were no specific morphologic features in the tumors of
groups B and C. To further verify this finding, we immu-
nohistochemically stained the endothelial cell marker
CD34 in the 27 RCC. As shown in Additional file 10:
Table S7, the results largely confirmed group-specific

angiogenic traits. All nine tumors in group A, but only
three in group B and one in group C had more than 100
microvessels, whereas the remaining ones had less than
50 microvessels per arrayed spot (0.036 mm2). Tumors
with high and low MVD were classified accordingly. In
order to find more group-specific markers which separ-
ate group B tumors from A/C and group A tumors from
C in combination with the CD34 staining, we further
searched genome wide with SAM [29] for genes with a
clear present or absent expression profile in the three
groups. SAM identified several candidates, including
DEK and MSH6, for which well-established antibodies
were available. By examining immunostaining patterns
of several protein candidates coded by these genes, we
were able to assign tumors with high MVD as well as
DEK and MSH6 positivity to group A, high or low MVD
and MSH6 negative tumors to group B, and tumors with
low MVD but DEK and MSH6 positivity to group C.
Examples of immunostained RCC are shown in Additional
file 11: Figure S4.
To evaluate the obtained group-specific protein ex-

pression patterns in a much higher number of tumors,
we screened a TMA with 254 RCC. By strictly applying
the staining combinations obtained from the small test
TMA, 189 tumors (75%) were clearly assigned to a spe-
cific group. The pathologic characteristics of the tumors
assigned to the three RCC groups are shown in Table 1.
There were organ-confined and metastatic RCC of dif-
ferent tumor subtype and nuclear differentiation grade
with varying frequencies in these groups. To determine
the clinical aggressiveness of these groups, we focused
our analysis on 176 of 189 RCC samples on the TMA
for which survival data were available. Kaplan-Meier
analysis showed a highly significant correlation (log rank
test: p< 0.0001) of group affiliation with overall survival,
in which patient outcome was best in group A and worst
in group C (Figure 3B). This result was independent
from tumor stage and grade in a multivariate analysis
(see Additional file 12: Table S8). By performing this sur-
vival analysis, we demonstrate that the molecular re-
classification of RCC allows the identification of early
stage tumors (pT1 and pT2) with high metastasizing po-
tential associated with poor patient prognosis. In
addition, the finding of late stage RCC in group A also

(See figure on previous page.)
Figure 2 Genome-wide expression signatures in RCC. A. Hierarchical clustering of 40 RCC samples across all probe sets of the HG-U133A
array, identifying the 3 groups (left). Hierarchical clustering of the 40 RCC samples based on expression signal values from 769 genes identified
from the SNP array analysis, show diffuse clusters prior to group acquaintance (middle), but are unraveling the 3 RCC groups when individual
tumors are affiliated (here: color coded) to their respective group before clustering (right). B – C. Heatmaps of RCC group-specific signatures with
corresponding intensity bars (absolute values). Relative increase (yellow) and relative decrease (blue) of gene expression. B. Gene expression of
the 50 best classifiers of subgroup B against subgroups A/C across a subset of A, B and C RCC. C. Gene expression of the 24 best classifiers of
subgroup A against subgroup C across a subset of A and C RCC subgroups.
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suggests the existence of patients with a relative good
prognosis although their tumors were categorized as
pT3.

Discussion
In this study we used unsupervised hierarchical cluster-
ing and gene expression pattern combination approaches
to detect robust molecular clusters which classify RCC
into three molecular groups with distinct prognostic
values. In many previous studies, RCC cases were either
preselected or expression data were linked according to
pathologic and clinical criteria for further analysis [15-
26]. Potential markers may have therefore represented
surrogate traits, overall confirming phenotypes at a mo-
lecular basis. To our knowledge, patterns of gene expres-
sions, independent of pathological or single molecular
parameters pointing to general RCC biology remained
uncovered to date.

Classification system databases suitable for
comprehensive gene expression clustering
To identify common RCC gene expression signatures,
we searched for large gene sets using the classification
systems INGENUITY (http://www.ingenuity.com/),
KEGG (http://www.genome.jp/kegg/) and PANTHER
(http://www.pantherdb.org). Our gene expression ana-
lyses demonstrated that more than 150 genes are
required to obtain major and clearly distinguishable gene
clusters. In contrast to Ingenuity and KEGG, only PAN-
THER is able to integrate several hundred genes into
“superior pathways”. Only within the clustering of these
four dominating processes different major group pat-
terns were obtained. The number of genes in the
remaining pathways was too low and therefore not suit-
able for cluster analysis. It is important to understand
that it was not our intention to analyze specific pathways
within RCC. We rather used this platform to visualize
sets of gene expression clusters which are differentially
regulated within different RCC. There was no notable

association between any of the RCC groups and any of
the 4 pathways. The 92 genes extracted from the 4
matrices (pathways) were rather equally distributed over
the 3 RCC groups suggesting the partial involvement of
all 4 pathways in the RCC groups. In our opinion the
results of the clustering by using randomly selected 5
sets of about 700 genes clearly indicate that we could
have taken any arbitrary chosen gene list for clustering
independent of any pathways.

Unsupervised versus supervised clustering
For supervised analysis of gene expression patterns in
tumors algorithms are commonly used that are linked to
known clinical parameters such as tumor subtype,
metastatic-nonmetastatic or treated-untreated. Conse-
quently, the number of clusters to be expected is already
known. As we tried to identify non-biased gene expres-
sion patterns, we chose unsupervised analysis for which
the resulting numbers of clusters are unknown. To cir-
cumvent this problem we combined the strongest gene
expression patterns into a new matrix and re-clustered
them by using the second clustering step, importantly,
against the same tumor cohort (Additional file 2: Figure
S1 A-D and Figure 1). Our approach to randomly select
genes and re-cluster them demonstrated that the three
tumor groups remained stable (Additional file 4: Figure
S2). We therefore believe that our two-times-two-way
non-supervised clustering method is an alternative strat-
egy to re-classify tumor types independent of TNM cri-
teria. We cannot rule out that additional groups exist
which may appear if more samples are included in the
analysis.

Molecular signatures strictly separate RCC tissue from
RCC cell lines
Surprisingly, the expression signature yielded from the
renal cancer cell lines was clearly distinguishable from
those derived from renal cancer tissues. We observed
that individual cell line expression profiles, independent

Figure 3 Validation and prognostic significance of the genome-wide expression signatures in RCC. A. Linear discriminant analysis of
groups “A”, “B” and “C” with 4 selected variables (genes). Classification of the three groups using the 4 highest ranked variables of Random Forest
allows linear discriminant analysis (LDA) with 96.94% accuracy. B. Kaplan–Meier analysis of tumor-specific survival in 176 RCC patients. Subgroup
A (high MVD, DEK and MSH positive), B (high or low MVD, MSH6 negative) and C (low MVD, DEK and MSH positive) (log rank test: p< 0.0001).
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of their respective primary tumors, were all similar to
each other. This general finding may mainly be caused
by culture conditions, the artificial environment and the
two-dimensional structure of cell culture layers. We
therefore believe that expression profiling using cell lines
would never lead to the detection of common renal can-
cer tissue-specific signatures. This also raises concerns
about the possibility of discovering novel strategies for
diagnosis and therapies by using in vitro systems only.

Molecular signatures do not coincide with pathologic
criteria
In contrast to the cell lines which represent a separate
group, RCC metastases and primary RCC split into
group A, B or C, irrespective of the tumor subtype,
stage, differentiation grade or sarcomatoid differenti-
ation. When looking at RCC group A, which contains al-
most only ccRCC, it seems that the clustering results
correlate with the histological subtype. However, these
ccRCC were of different tumor stage and grade. The
same is true for the tumors in group B and C. In these
groups ccRCC, pRCC as well as chRCC of different
pathologic parameters were allocated. Furthermore, our
molecular classification allows to additionally refine the
staging and grading of tumors. Organ-confined RCC,
particularly pT1 tumors, generally considered to have a
good prognosis can further be subdivided in group A
(good), B (worse) or C (worst) which also may have pre-
dictive impacts. Although ccRCC, pRCC and chRCC
have a different morphological background, the com-
bined appearance of the three histological subtypes
across different clusters suggests molecular and func-
tional similarities.

The three RCC output signatures are not influenced by
the VHL/HIF axis
Based on the results obtained from a series of previous
VHL mutation analyses, it is widely accepted that the
loss of function of pVHL mainly contributes to the de-
velopment of ccRCC [43]. The inactivation of pVHL
leads to HIF-α stabilization and, hence, to the upregula-
tion of a number of genes involved in RCC progression
(i.e. VEGFA, PDGF, TGF, CXCR4, CA9) [44-46]. There-
fore, we assumed to detect gene expression patterns
connected to HIF signaling pathways. However, gene ex-
pression patterns demonstrated no remarkable linkage
between HIF-regulated pathways and any of the RCC
subgroups. This finding is in line with the results of a re-
cent study in which VHL wild-type tumors, HIF-1α and
HIF-2α overexpressing tumors, as well as HIF-2α-only
overexpressing tumors were found in both ccRCC clus-
ters [26].
We also looked at the VHL mutation status in all ana-

lyzed ccRCC and identified gene sequence alterations in

the majority of the tumors [10]. A recent study demon-
strated that the thermodynamic stability and the func-
tionality of pVHL is dependent on the location and the
type of mutation [10]. As the frequencies and types of
VHL mutations were similar in all three RCC groups, it
was not surprising that there was no association with
the gene expression patterns, neither with the VHL mu-
tation status nor with any HIF-driven pathways (data
not shown). Our data strongly suggest the existence of
pVHL-independent mechanisms, resulting in distinct
gene expression outputs which reflect common biologic
pathways in renal cell cancer.

RCC gene expression signatures are not directly linked to
copy number alterations
Our integrative approach that combined SNP- and
microarray data, revealed no direct correlation between
the signatures of CNA-affected genes analyzed in 45
RCC and the three RCC groups. Only one of the 92
cluster forming genes (ITGAL; see Additional file 3:
Table S2) belonged to the 769 genes residing within the
126 CNAs found in our RCC set. Moreover, hierarchical
clustering of both CNA-affected and non-affected genes
demonstrated that the three RCC gene expression pat-
terns are not directly influenced by copy number altera-
tions. This finding is in line with a recent study which
also found many discrepancies between CNA and gene
expression [47]. The authors suggest that the expression
of many “driver” genes are less correlated with their
copy number than “passenger” genes due to selective
pressure. Additional multiple ways exist to up- or down-
regulate a gene.

RCC is not caused by alteration of single genes and
pathways
It is remarkable that, although type and frequencies of
CNAs were largely differing within the tumor cohort
and varied between none (!) and 18 altered genomic
regions in single tumors, each of the three group-
specific gene expression patterns remained stable. We
postulate that each of these RCC must have developed
individual mechanisms in addition to CNAs (i.e. muta-
tions, methylations, transcriptional and translational
modifications), which together support the regulation of
molecular components to reach one of the three tumor
groups. A recent study showing that low CNA rates in
tumors are related to increased levels of global DNA
methylation and vice versa [48] supports our hypothesis.
In contrast to previous approaches, we combined sev-

eral subtypes of RCC for non-supervised hierarchical
clustering approaches in combination with LDA entirely
unbiased from different clinico-pathologic parameters.
Our results demonstrate that RCC group formation pat-
terns remained very similar across various sets of genes
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arguing for a substantial number of genes which partici-
pate in the molecular definition of a RCC group. It is
therefore not surprising that more than one third of the
human genes have already been identified as being
cancer-relevant [49] and many of them being claimed as
potential biomarkers [50]. As a consequence, we believe
that in a tumor many molecular pathways must be dir-
ectly or indirectly affected to eventually reach one of the
three output signatures.

Characterization of the three RCC groups at the protein
level
By subsequently performing our TMA analysis on a sec-
ond, larger cohort of RCC we validated our results also
on the protein level. To find appropriate markers we
tested several antibodies directed against proteins whose
genes were clearly upregulated in one of the groups.
Among 10 candidates tested only MSH6, a DNA mis-
match repair enzyme, and DEK, a chromatin- and RNA-
associated protein mutated or overexpressed in certain
cancers, showed reliable immunostaining results. The
third protein, CD34, was indirectly identified by retro-
spectively analyzing the tumors histologically after the
clustering analyses (Figure 1). We found increased
microvessel density in group A by selecting the RCC
samples randomly without knowing any specific patho-
logical features (with the exception of stage and grade).
Although not expressed in RCC cells, this endothelial
marker is an ideal marker to morphologically distinguish
group A from group B and C. Our effort to select suit-
able protein markers for the RCC groups demonstrated
strong differences between the expression signatures at
the RNA and the protein levels. Further protein analyses
are needed to identify additional markers or marker
combinations with both prognostic and predictive value.

Conclusion
We believe that the identified genome-wide signatures
point to common molecular programs characteristic for
the biology of RCC. Here, we provide a novel concept
for RCC classification implying potential impacts on
tumor diagnostics and the development of tailor-made
therapies. We still do not know whether the identified
signatures are restricted to RCC or exist also in other
cancer types. If the latter is true these expression pat-
terns may represent outputs of molecular events which
have led to common functional characteristics of
cancers.

Additional files

Additional file 1: Table S1. List of samples used in expression array,
55 of them were also used for SNP experiment.

Additional file 2: Figure S1. The strategy to find group-specific
expression signatures in RCC. Hierarchical clustering of HG-U133A
microarray probe sets representing genes from the Angiogenesis (A),
Inflammation (B), Integrin (C), and Wnt (D) “pathways” as annotated by
PANTHER, across a set of 146 microarrays from our RCC experiment. For
each “pathway”, up to four probe set clusters (red boxes) were selected
and combined for subsequent re-clustering. (E) Another PANTHER
“pathway” (Apoptosis) and one RCC-relevant “pathway” (HIF). Note the
presence of less genes in these matrices compared to A-D and the
absence of clear probe set clusters (except for cell lines in “Apoptosis”,
indicated by the green bottom line), visually subdividing the matrix.

Additional file 3: Table S2. List of clusters and containing genes,
picked from separate "pathway clusterings" to be combined into one
matrix.

Additional file 4: Figure S2. The three RCC gene expression
signatures spread genome-wide. Hierarchical clustering of 5 times
arbitrarily chosen probe sets (each composed of ca. 660 genes) against
group affiliated tumors (individual group-sample is labeled as A_, B_ or
C_) (A-E). Note the tumor-group forming coincidence within the 5
independent analyses and the similarity with that shown in Figure 2A.

Additional file 5: Table S3. List of top 48 genes with expression
values, specific for RCC tumors of group B, relative to A and C.

Additional file 6: Table S4. List of top 23 genes with expression value,
distinguishing RCC tumors of group A from group C.

Additional file 7: Figure S3. The landscape of CNAs in RCC does not
correlate with novel molecular subgroups. (A) Regional genomic CNAs in
RCC shown as percentage of analyzed cases (genomic gains: yellow, up;
losses: blue, down). Top: depiction of the overall CNAs in the 45 study
cases; Down: published chromosomal and array CGH RCC data accessible
through the Progenetix database (568 cases). Copy number variants
(CNVs) were not filtered from the study case data besides application of a
100 kb size limit. Note the similar profiles. (B) Case specific regional copy
number imbalances in 36 RCC study cases with regional genomic gain or
loss status matched to 811 cytogenetic regions. The genomic profiles are
randomly arranged within their subtypes. White areas indicate concurrent
gain and loss in this cytoband. Note the appearance of known
subtype-specific genomic alterations (3p deletions, 5q gains identifying
clear cell RCC – asterisk and arrow/left side; gains of chromosomes 7, 17
and 20 identifying papillary RCC - arrows right side).

Additional file 8: Table S5. List of 36 RCC tumors considered on
expression- and SNP array, and their affiliation to a specific group
according to gene expression array.

Additional file 9: Table S6. List of tumor-specific regions (0–5 Mb)
and involved genes, identified by SNP experiment.

Additional file 10: Table S7. The Test Tissue Microarray to establish
antibody combinations for tumor/group affiliations.

Additional file 11: Figure S4. Examples of immunostained RCC
group-specific markers CD34, DEK and MSH6. ccRCC with CD34-stained
vascular microvessels (A, B); ccRCC with strong nuclear DEK (C) and MSH6
(D) positivity.

Additional file 12: Table S8. Cox proportional hazard regression
analysis for survival.
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