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Abstract

Background: Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides
specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating
genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA
patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In
addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems.

Principal Findings: We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into
160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for
differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together
according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster
dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This
approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations
varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly
recurrent (hot-spot) cytogenetic imbalance regions.

Conclusions: Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative
copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA
frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential
for cancer development.
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Introduction

Genetic changes such as point mutations, regional copy number

alterations/aberrations (CNA) and structural changes (e.g. gene

fusion events) are all hallmarks of cancer. CNAs arise as somatic

changes in the tumor cell genome through a variety of mechanisms

and can be observed in virtually all types of cancer, to a varying

extent. So far, the most widely used methods for the detection of

CNAs have been chromosomal and array-based Comparative

Genomic Hybridization (CGH) techniques [1–4]. Localized,

recurring CNAs (hot-spots) have been shown to target canonical

oncogenes (e.g. duplications/amplifications of the MYC, MYCN,

REL loci) or tumor suppressor genes (e.g. deletions of the

CDKN2A/B, TP53, ATM loci). Some regional CNAs such as

gains on 8q and losses on 3p are present across multiple cancer

types, whereas other imbalances may be largely restricted to a

limited number of cancer entities [5].

Datasets integrated across multiple cancer types have previously

been analyzed, to report regional ‘‘hot-spots’’ of frequent CNAs

[5,6]. In a given set of individual tumor samples, the number and

distribution of CNAs varies considerably [5] and this genetic

heterogeneity has been used to detect and report co-occurring

CNAs [7].

In principle, specific patterns and similarities in the individual

and/or disease specific CNA profiles might point to distinct

oncogenomic mechanisms acting in different cancer types and

specimens, given a sufficiently large number of data points.

Indeed, clustering of CNA patterns has been used to identify

oncogenomic similarities [5,8–11]. The adaptation of clustering

techniques to the analysis of CNA patterns has been subject of

previous studies [12–14]. With a few exceptions [5,14], however,

sample-based clustering has been the main focus of such studies so

far. In contrast, we here explore the clustering of cancer types, not

of individual cancer samples.

Both descriptive and clustering-based analyses of CNA across

multiple cancer types suffer from a bias towards the more

frequently occurring events. Due to the heterogeneity of the

overall CNA signal, with greatly varying average frequencies of
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CNAs per cancer type (Figure 1a), clustering results may be

distorted depending on the disease entities analyzed. This

variation in overall CNA occurrence frequencies across cancer

types may simply be owed to differences in the average time points

of clinical detection or in different progression characteristics, and

should be corrected for prior to clustering analyses. To the best of

our knowledge, so far no implementation has been reported for a

comprehensive, very large-scale clustering analysis of frequency-

normalized cancer CNA profiles.

Here, we focus on the identification of genomic regions that

contribute meaningfully to the clustering of cancer types. From

hereon we will refer to those as ‘‘non-neutral’’ regions. As the

starting point of our analysis, we use hierarchical clustering to

arrange cancer types on the basis of their CNA frequency profiles.

We then employ a permutation approach to estimate the relative

contribution of individual genomic regions to the quality of the

clustering and to the derived relationship tree. The clustering

quality is inferred from an intrinsic measure (summed branch

lengths: tree height statistics), and genomic regions that reject the

null hypothesis are termed non-neutral. Identified regions are

compared to canonical CNA hot-spots (i.e. those that occur most

frequently across the entire dataset).

Our current analysis is based on data from a total of 25579

samples, which are classified into 160 different cancer entities

(table S1) according to the International Classification of Disease

in Oncology (ICD-O 3). Our approach is unique in that it a)

focuses less on the clustering as such but more on the individual

genomic regions that best support the clustering, b) uses an

intrinsic quality measure coupled to a permutation strategy for

validation, c) performs CNA frequency normalization prior to

analysis, and d) is based on a very large data set, processed in a

standardized setup. We aim for the identification of potential

cancer-specific driver/modulator regions, which may not have

been detected in earlier, largely hot-spot-focused approaches. All

of the underlying cancer data is available through our Progenetix

repository (www.progenetix.org; [15]).

Results

The average overall frequency of CNAs across the entire

genome varies among different cancer types (Figure 1a). Since the

relative weight of CNAs at individual genomic regions in a given

cancer type depends on the observed overall genome-wide

frequency, we aggregated all patient samples by cancer type and

normalized the frequencies of CNAs for each cancer type to the

overall mean observed across the entire data set (Figure 1b, Figure

S1). The normalized CNA frequency profiles were then clustered

using hierarchical clustering.

To evaluate the quality and the biological signal in the

clustering, we labeled each cancer type with its ‘‘root’’ cell type

(i.e., an undifferentiated cell type from which the tumor likely

originated). We expected cancers of the same root cell type to

cluster together; this was used as an external proxy for the

expected biological relationships between cancer entities. The

Random Index [16] was used to compute this external cluster

quality measure. Tumors of the same cell type indeed often

clustered together, usually in 2–3 small groups (Figure 2). The

consistency of this grouping was significantly higher than expected

Figure 1. The overall frequency of genomic copy number alterations (CNA) differs among cancer types. Boxplots show the CNA
frequency distributions among tumor samples in 10 randomly selected cancer types. The boxplot delineations mark the percentiles 5%, 25%, 75%
and 95%. The red lines indicate the mean frequency for each cancer type, whereas the blue line represents the overall mean frequency across all 160
cancer types analyzed here. Frequency values are defined as the ratio of number of samples showing a CNA for a genomic region (i.e., cytogenetic
bands) over total number of samples in that cancer type. a) Before normalization b) After normalization. In b) the nominal frequency distribution for
each cancer type is re-scaled so that its mean matches the overall mean across all cancer types. (NOS – ‘‘not otherwise specified’’: high-order
classifications, not further assigned to more detailed levels).
doi:10.1371/journal.pone.0043689.g001
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at random, pointing towards biologically meaningful differences in

CNA profiles between tumors of distinct origins. Cutting the tree

at several heights always led to an observed quality of clustering

that was better than the expected random value (Figure 2), except

for the cut at the highest level, which resulted in only three

clusters. This strongly argues against a completely neutral

occurrence pattern of CNAs in the genome, and supports a

correlation between biologically meaningful groups of cancer

entities and their CNA profiles.

Randomizations of the entire frequency matrix lead to a

complete loss of the signal present in the clustering tree (Figure S2),

and also strongly reduced the summed branch lengths tree-height

statistic.

Non-neutral CNAs
The normalized and clustered frequency matrix encompassing

160 large-scale genomic regions and 160 cancer types is shown in

Figure 3. To determine how much each individual genomic region

contributes to the overall signal, we individually randomized its

profile across cancer types, while keeping the rest of the data

unchanged. We then examined the concomitant reduction in the

tree length statistics (TLS) of the clustering dendrogram, upon

100000 independent randomizations, to determine the statistical

significance of that region’s contribution. The resulting cancer-

diverging CNA regions are important as they cannot be fully

neutral and have the potential to define relationships among

cancer types. Indeed, 43 out of the 160 genomic regions (table S1)

were observed to have a non-neutral contribution (Bonferroni-

corrected p-value ƒ0:016) in the aggregated cancer CNA data.

Note that gain and loss events were treated independently, and no

preferential bias towards gains or losses was observed among the

detected non-neutral regions (22 gains and 21 losses). The CNA

occurrence frequencies of the non-neutral genomic regions spread

thorough the entire frequency spectrum (Figure 4). Only 13 (8

gains and 5 losses) of the non-neutral regions were found altered

overall more often than average (Figure 5, intersection of black

and grey rectangle), indicating that subset of frequently altered

hotspot regions carry a detectable signal to distinguish cancer types

(the number of frequently altered regions stands at 59; Bonferroni-

corrected p-value ƒ0:016, table S1). This observation emphasizes

our key point that not only the frequent CNA regions should be

used to cluster and annotate cancer types.

22 genomic intervals across 12 chromosomes were found to be

informative when specifically considering duplications/gains only

(Table 1 and Figure 5). All three genomic segments of

chromosome 18 (18p1, 18p2, 18q2) exhibited a signal. For other

chromosomes such as chromosome 1 (1q2,1q3,1q4,1p2), chromo-

some 3 (3q1, 3q2, 3p1), chromosome 12 (12q1,12q2) and

chromosome 21 (21p1, 21q1) more than 50% of genomic regions

were informative as gains, suggesting simultaneous involvement of

multiple loci from these chromosomes. Changes on chromosome

1(1p2), chromosome 3 (3p1, 3q1), chromosome 5 (5q2, 5q3),

chromosome 9 (9p1), chromosome 11 (11p1), chromosome 12

(12q1, 12q2), chromosome 18 (18p1, 18q1, 18q2) and chromo-

some 21 (21p1, 21q1) were selectively informative only as gains. In

terms of deletions/losses, 10 chromosomes encompassing 21

genomic regions were found to be non-neutral. Like for

chromosome 18 gains, the complete chromosome 7 (7p1, 7p2,

7q1, 7q2, 7q3) was found to be informative when lost (Table 1).

Informative regions on chromosome 1 (1p1,1q1, 1q2, 1q3, 1q4)

and chromosome 9 (9q1, 9q3, 9p2) covered more than 50% of

genomic segments present on these chromosomes. Selective losses

were observed on chromosome 1 (1p1, 1q1), chromosome 6 (6q2),

7 (7q1, 7q2, 7q3, 7p2), 8 (8q1, 8q2), 9 (9p2, 9q1, 9q3), 12 (12p1),

16 (16q1). CNAs involving chromosome 1 (1q2, 1q3, 1q4),

chromosome 3 (3q2), chromosome 7 (7p1), chromosome 19 (19p1)

and chromosome 22 (22q1) were informative both as gain and loss

events. This represents a small proportion (16%) of non-neutral

CNA. Involvement of a region both as gain and loss may point

towards multiple adaptively relevant loci, and/or towards a

generally unstable nature of these regions.

Cancer Diverging Nature of Non-neutral CNA
To provide few examples of cancer classifying behavior of non-

neutral changes, we selected a few of the enriched changes and

analyzed them for their specific occurrence in different cancers.

An example include cancer entities showing predominant losses

versus gains on 7q. Preferential losses involving 7q were observed

in germ cell, myeloid and myeloproliferative tumors (Figure 3)

whereas neuroepithelial brain tumors (among other entities)

preferentially displayed gains on 7q. Losses involving 7q are

common in myeloid and myeloproliferative tumors [17–20] and

are associated with advanced age and resistance to therapies

[21,22]. However, here we show that 7q losses are quite specific to

myeloid tumors and promote their selective divergence from other

cancer types. 7q losses in germ cell tumors had not been explored

in detail [23,24]. With the accumulation of 7q losses virtually

restricted to myeloid/myeloproliferative neoplasias and germ cell

tumors and in contrast to chromosome 7(q) gains observed in e.g.

neuroepithelial brain tumors, it is tempting to propose involve-

ment of at least one common oncogenetic mechanism acting in

these clinically unrelated malignancies.

Chromosome 8q gains can be observed in the majority of

cancer entities [5,6]. However, in our analysis 8q losses were

enriched as non-neutral events. Preferential losses involving 8q

were present in some brain tumors (e.g. medulloblastoma,

Figure 3), separating them from other epithelial tumors. Differ-

ences in preferential losses involving 8q separated neuroepithelial

tumors in two categories with both having gains on 7q but only

one (mainly meduloblastomas) having preferential losses on 8q

(Figure S3). Losses involving chromosome 8q across medulloblas-

tomas have been reported by a few [25] studies before. Our

analysis shows that 8q losses are selected for in some medullo-

blastomas and therefore could be important for cancer develop-

ment/progression. Preferential losses of 8q were also observed in

germ cell tumors separating them from other epithelial neoplasias

(Figure S4).

As another example of restricted CNA types we also looked for

cancers showing gains involving chromosome 18. Follicular

lymphomas exhibited specific gains on chromosome 18 where as

epithelial tumors prefered to loose chromosome 18 (Figure S4).

Chromosome 18 gains are very common in follicular lymphomas

and are supposed to provide an alternative mechanism for BCL2

activation [26,27]. However, here we show that this CNA event

statistically separates them from other cancer types.

Discussion

Our current study represents the largest analysis performed to

date on cancer CNA data, with the aim of detecting oncogenomic

features that may be specifically associated or enriched in certain

subsets of cancer entities. In contrast to gene-centric approaches,

our analysis assesses the complete information space of genomic

copy number imbalances from whole genome profiling experi-

ments.

Overall, the frequency of CNAs across genomic intervals varied

between between 0.01% to 23% (Figure 4). Clustering of cancer

types on the basis of their frequency profiles helped to identify a

Regional Genomic Copy Number Alterations in Cancer
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Figure 2. The tissue type of a cancer has a strong influence on its CNA likelihood pattern. a) examples of individual chromosome
segments, showing their observed CNA frequencies stratified by cell type. Each dot summarizes all samples classified under one particular ICD type,
color-coded by root cell type. In the left panel, three chromosome segments are shown that exhibit strong differences between cell types; on the
right, three negative examples without such a signal. All p-values were corrected for multiple testing according to Benjamini-Hochberg. b) the

Regional Genomic Copy Number Alterations in Cancer
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class of underlying molecular signals that is orthogonal to

histological classifications or clinical categories (the latter are

predominantly driven by the affected organ/tissue). Cancer types

vary from each other in their CNA abundance, CNA size

spectrum and degree of genomic instability. With respect to

genomic coverage, large CNAs are generally frequent in cancer

[6] and should not be excluded from statistical analyses of cancer

genome patterns. While comparing CNA profiles of cancer types,

their complexity and variation in frequencies have to be

considered. When correcting for these parameters, regional CNAs

defining the divergence of the overall profiles can be delineated.

We performed an analysis of a global cancer CNA dataset,

identifying 43 genomic regions on 15 chromosomes as significant

for CNA profile divergence in cancer types. Obviously, these

changes do not cover the entire spectrum of CNA events in cancer,

but define a subset of genomic regions that may have a possibly

adaptive link to the distinct biology of various cancer types. These

regions overlap rather poorly with hot-spot regions observed in

many cancers. This suggests that hot-spot regions, though

frequently associated with canonical oncogenes, may not always

be very useful in aiding data-driven evaluation of cancer (sub-)

types.

Disease specific studies have the potential to detect a

representative spectrum of oncogenomic aberrations in the given

entities. It can be expected that the cancer type specific regions

highlighted with our approach had been discussed in the context

of the respective publications. However, with our current study,

we aim to provide a new, generalized approach at identifying

genomic elements relevant in the genesis of individual cancer

entities. Although here showcasing a ‘‘global’’ approach without

entity pre-selection, our methodology may prove valuable when

targeting relevant genomic separators in limited, biologically

related entity sets.

Since the current analysis is based primarily on molecular-

cytogenetic data from chromosomal CGH experiments with a

spatial resolution of several megabases, only inferred information

about the causal genes present in the non-neutral regions could be

obtained. With upcoming high-resolution genomic array and/or

sequencing data, similar analyses will more specifically define the

non-neutral CNAs and can be valuable starting points for an

integration of the results with functional pathway frameworks. We

have recently announced the creation and public availability of a

reference resource for oncogenomic array data (www.arraymap.

org [28]), which will serve as starting point for such approaches

dendrogram (tree) has been obtained using hierarchical Ward clustering on the global frequency-normalized CNA profiles across all 160 genomic
regions. Cancer types are again color-coded according to the cell type of origin, with the same legend as in a). Partitioning the tree by cutting at
different heights produces multiple clusters; validation of those clusters based on the cancer origin (metric: Random Index) shows that the clustering
works significantly better than expected at random.
doi:10.1371/journal.pone.0043689.g002

Figure 3. Examples for non-neutral CNA regions. a) Heatmap of CNA profiles on genomic regions (same clustering as in Figure 2). Genomic
locations are represented with orange color when considering duplications/gains, and in blue when considering deletions/losses. Color intensity
shows relative CNA frequencies; the most-affected region in each row is arbitrarily set the to brightest color (1.0) for display purposes. b) Small
regions (black rectangles on the heatmap) are zoomed in to show how non-neutral CNAs can differentiate between cancer types. The example shows
that 7q is preferentially gained in brain tumors (red labels) whereas it is preferentially lost in germ cell (black labels), myeloid and myeloproliferative
cancer types (blue labels). c) Small regions (red rectangles on the heatmap) are zoomed in to show how 8q is preferentially lost in medullublastomas
(green labels) and is preferentially gained in epithelial tumors (pink labels). Some chromosomes consist entirely of non-neutral regions (such as
chromosomes 18 and 7). Note that the spatial resolution of the CNA data on the chromosome is limited (roughly corresponding to cytogenetic band
resolution).
doi:10.1371/journal.pone.0043689.g003
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both from our side as well as from interested members of the

research community. Also, although we have focused our current

analysis solely on a CNA dataset, our methodology should prove

particularly valuable when combined with other sets of related

diagnostics (for example point mutation data), whereby the

assignment of possible driver genes in the non-neutral regions

might become feasible.

Figure 4. Not only CNA ‘‘hotspots’’ are informative in cancer classification. Genomic regions (bands) are sorted according to their overall
frequency of CNAs observed. Those regions that are informative with respect to cancer type clustering are marked with arrows. a) Considering
duplications (gains) b) Considering deletions (losses).
doi:10.1371/journal.pone.0043689.g004

Figure 5. Comparison of non-neutral vs. hot-spot CNA. Genomic regions affected by CNAs, either more frequently than average (black
rectangle), or non-neutrally with respect to cancer-type classifications (grey rectangle). The intersection defines regions that are affected both
frequently and non-neutrally. Changes are color-coded (gains in orange and losses in blue).
doi:10.1371/journal.pone.0043689.g005
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Materials and Methods

Data
Our study is based on well annotated cancer CNA data from

the Progenetix project [5], including a total of 25579 samples

analyzed by chromosomal (cCGH; 18708) and array CGH

(aCGH; 6871) experiments. The clinical samples had been

classified into 160 distinct cancer entities according to the

International Classification of Disease codes (ICD). At the time

of writing, the Progenetix collection represents the largest resource

for annotated, whole genome CNA profiling data in cancer.

For our analysis, regional CNA information across all cancer

types was reduced to 80 genomic intervals covering the entire

genome with the exception of the sex chromosomes. Gain and loss

events were considered separately for the analysis, resulting in a

matrix of dimensions nXm, where n is the number of samples and

m is the number of genomic intervals (i.e. 160).

Cancer Clustering
The frequency of CNA changes across all genomic intervals was

computed for each ICD type, and the entire frequency matrix was

then normalized (Figure S1). The frequency matrix was ordered

using hierarchical Ward clustering. The aggregated separation

distance between cancer entities obtained using hierarchical

clustering can be analyzed by parsing the clustering tree

(dendrogram). The tree represents the relatedness among groups

present in the same clade (similar to phylogenetic trees).

Randomized data disrupts the tree completely (Figure S2), and

the overall tree height statistic is reduced 3-fold, reflecting the

complete loss of ordering information present in the original tree.

Method to Compare Tree Height
We used the tree height as an intrinsic measure to compare

cancer associations obtained using clustering and to gauge the

information present in the tree; this was used to define non-neutral

CNAs. This has advantages over traditional clustering evaluation

techniques, as it a) does not require external gold standard

information, and b) does not require cutting the tree at an

arbitrary distance. The overall tree height is defined as the sum of

all direct parent-child relation path lengths in the tree. Tree

distances (branch lengths) generally reflect the CNA profile

discrepancies between two cancers (or groups of cancers). For

any node i, the tree height between this node and its immediate

parent j can be measured as THj{THi. The overall tree height of

a tree with n nodes is than obtained as OTH =Pi~n,j~n
i~1,j~1 THj{THi (figure S3).

Tree length statistics (TLS). To identify genomic regions

that are non-neutrally affected by CNA we have developed the

following permutation strategy:

1. Normalized frequencies of CNA across all genomic intervals

are computed across all cancer types.

2. The cancer classification tree is obtained using hierarchical

Ward clustering.

3. The observed over all tree height (OTHo) is calculated as

mentioned above (Figure S5).

Table 1. Number of non-neutral regions per chromosome.

Chromosome No. No. genomic locations Non-neutral gains Non-neutral losses

1 7 4 5

2 5 – –

3 4 3 1

4 4 – –

5 4 2 –

6 4 – 1

7 5 1 5

8 4 – 2

9 5 1 3

10 3 – –

11 3 1 –

12 3 2 1

13 4 1 –

14 4 – –

15 3 – –

16 3 – 1

17 3 – –

18 3 3 –

19 2 1 –

20 2 – –

21 3 2 –

22 2 1 –

Some chromosomes consist entirely of non-neutral regions (such as choromosomes 18 and 7). Note that the spatial resolution of the CNA data on the chromosome is
limited (it roughly corresponds to the cytogenetic banding patterns).
doi:10.1371/journal.pone.0043689.t001
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4. A counter C is set to zero for every genomic interval in

consideration.

5. For any genomic interval i, its status values are shuffled among

all samples keeping its over all frequency the same (ni).

6. The frequency of CNA at genomic interval i is re-calculated

after randomization across all cancer types. The shuffling in the

previous step changes the frequency of interval i across all

cancer types keeping the normalized frequency distribution of

all other genomic intervals.

7. The frequencies for interval i in the normalized frequency

matrix from step one are replaced with permuted frequencies

for this interval and the permuted overall tree heigh (OTHi,p) is

computed.

8. If OTHi,p§OTHo, C is incremented as C = C+1.

9. p-value for genomic location i, at the end of N (100’000)

permutations is computed as pi~C=N.

10. p-values across all bands are corrected for false discovery

rate using Bonferroni correction.

Frequency Based Enrichment (FBE)
Frequently observed CNA regions (‘‘hot-spots’’) are genomic

changes that occur more often than expected under a fully random

null model. Such hot-spot CNAs can be identified using the

binomial probability function [29]. Let’s suppose genomic interval

i shows a CNA across ni samples out of N samples. The

background CNA frequency (nb) can be represented as the mean

frequency change across all intervals. The p value that the

frequency of CNA ni, is more than any frequency x (ni§x) is

obtained using the binomial probability function.

p(ni DN,nb)~
N

ni

� �
n

ni
b (1{nb)N{ni

pi~
XN

n~x
p(ni DN,nb)

Genomic intervals showing a large deviation from the mean will

be assigned low p-values. All p-values are corrected for false

discovery rate using Bonferroni correction.

Supporting Information

Figure S1 Method for CNA frequency normalization
across cancer types. All the frequencies among cancer types

were normalized to the mean frequency of CAN changes across

across the 160 cancer types. This normalization was achieved by

multiplying the cancer-type-specific frequencies with an index An,

whose value was calculated as shown.

(PNG)

Figure S2 Dendrogram of a permuted frequency ma-
trix. For this clustering, the frequencies among cancer types were

permuted and then normalized. Hierarchial Ward clustering was

then performed and the dendrogram tree shown was obtained.

The tree height is severely affected by the permutation. In this

randomized clustering, similar cancer types no longer clustered

together.

(PDF)

Figure S3 Small regions from heatmap in main Figure 3
are shown here. These regions represent gains and losses on 7q

and 8q. 8q changes differentiate between two categories of brain

tumors, with a subset showing preferential losses on 8q (green

labels) and other rarely showing involvement of 8q locus (red

label). Thus depending on 8q involvement neuroepithelial tumors

can be divided in to two different categories. Both of them show 7q

gains.

(PDF)

Figure S4 Examples for non-neutral CNA regions. a)

Heatmap of CNA profiles on genomic regions (same as in

Figure 3). b) Small regions (red rectangles on the heatmap) are

zoomed in to show how 8q is preferentially lost in in germ cell

(black labels) tumors and is preferentially gained in epithelial

cancer types (pink labels). c) Small regions (black rectangles on the

heatmap) are zoomed in to show how 18q is preferentially gained

in medullublastomas (brown labels) and is preferentially lost in

epithelial tumors (pink labels). The examples here show that how

two different non-neutral changes differential epithelial tumors

from germ cell tumors and follicular lymphomas.

(PDF)

Figure S5 Calculation of over all tree height. Schematic

representation of the summed branch-length tree height statistic.

Overall tree height is computed by summing up the distance

between all parents and child nodes. Note that the branch lengths

of terminal branches (‘‘leafs’’) are not considered. Overall tree

height = HA{CzHBD
zHABzHE .

(PDF)

Table S1 Table with information about cancer types
used in the analysis, non-neutral and hot-spot p values.
The table giving details about all cancer types used in this analysis

with the corresponding numbers of samples in them and the root

cell type of each cancer. The table also has information about the

non-neutral and hot-spot p-values obtained for all genomic bands

in analysis.

(ODS)
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