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ABSTRACT

DNA copy number aberrations (CNAs) can be found in
the majority of cancer genomes and are crucial for
understanding the potential mechanisms underlying
tumor initiation and progression. Since the first
release in 2001, the Progenetix project (http://www.
progenetix.org) has provided a reference resource
dedicated to provide the most comprehensive collec-
tion of genome-wide CNA profiles. Reflecting the
application of comparative genomic hybridization
techniques to tens of thousands of cancer genomes,
over the past 12 years our data curation efforts have
resulted in a more than 60-fold increase in the number
of cancer samples presented through Progenetix. In
addition, new data exploration tools and visualization
options have been added. In particular, the gene-
specific CNA frequency analysis should facilitate the
assignment of cancer genes to related cancer types.
In addition, the new user file processing interface
allows users to take advantage of the online tools,
including various data representation options for pro-
prietary data pre-publication. In this update article, we
report recent improvements of the database in terms
of content, user interface and online tools.

INTRODUCTION

DNA copy number aberrations (CNAs) are a form of
genomic mutations found in the majority of individual
cancer genomes (1–3). Most cancer types, especially
solid tumors, exhibit distinct patterns of CNAs that may
reveal both shared and distinct evolutionary processes
in the development of different tumor entities (4–6).
Understanding the role CNAs play in cancer initiation
and progression should help to elucidate these mechan-
isms of oncogenesis (2,7). A subset of genomic rearrange-
ments involves distinct oncogenes and tumor suppressors,
either through the alteration of gene expression profiles or

through the formation of oncogenic fusion genes, and
directly promote cancer growth and metastasis (8–10). In
clinical research, CNAs have been successfully employed
to distinguish cancer subtypes and also been recognized as
prognostic markers, with potential applications in thera-
peutic stratification (11,12).
Comparative genomic hybridization (CGH) is a class of

in situ hybridization techniques that has extensively been
used to screen genome-wide CNAs in cancer samples
(13,14). According to the different substrates, CGH plat-
forms can be divided into chromosomal CGH (cCGH)
and variants of array CGH (aCGH) (15–17). We apply
the term ‘aCGH’ broadly to cover all types of arrays
resulting in whole genome copy number status data,
including genomic single color arrays [e.g. single nucleo-
tide polymorphism (SNP) arrays], for which external ref-
erence data are used. For cCGH, normal metaphase
chromosomes from cultured cells are used as hybridiza-
tion target (13). In aCGH platforms, an array of defined
DNA fragments is either spotted on a substrate (i.e. glass
slide) through a variety of ‘printing’ techniques or is
generated through in situ synthesis of DNA oligonucleo-
tides (15,16). For all types of hybridization targets,
genomic DNA extracted from a tumor sample is fluores-
cence labeled and hybridized to the denatured target
DNA. For dual-color experiments (e.g. cCGH, large
insert clone arrays), a co-hybridization with normal
genomic reference DNA labeled with a different fluoro-
chrome is performed; variations in the tumor/normal
fluorescence intensity ratios allow the detection of
abnormal genomic content in the tumor at the corres-
ponding genome loci (18–20). Single color array experi-
ments require a computational evaluation of the signal
distribution in relation to external reference datasets
(21,22). Generally, the resolution of cCGH is limited to
chromosome-bands level, and only genomic gains and
losses greater than !5–10Mb can be reliably detected by
cCGH (13). For aCGH, the resolution is determined by
the number and size of probes on the array (23). Recently,
several ultra-high resolution aCGH platforms have been
manufactured with millions of probes on a single glass
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chip with the ability to detect minute genomic aberrations,
as small as a few kb (24,25). These platforms include array
types originally designed for other purposes, such as SNP
arrays and DNA methylation arrays (17,26).
The development of CGH and related techniques has

greatly stimulated interest in cytogenetic analysis of differ-
ent cancers (4,27–29). In the last decade, numerous
oncogenomic data sets have been accumulated, making
large-scale analysis across multiple cancer entities feasible.
For instance, while our group previously had provided a
descriptive analysis of more than 5000 CGH profiles from
epithelial neoplasias (30), Beroukhim et al. (31) reported a
study of copy number profiles of more than 3000 cancer
samples, mainly from 26 entities. In 2013, Kim et al. (32)
presented an analysis based on !8000 genomic arrays.
These analyses exemplified the value of large-scale CNA
data analysis in cancer research. Furthermore, the compre-
hensive collection of genomic copy number profile scan be
used to explore relatively low frequency gene-specific CNAs
as well as complex events in cancer genomes, such as
chromothripsis-like patterns (33,34).
Given the large amount of CGH data scattered in pub-

lications and various data repositories, it is highly desir-
able to have a single, comprehensive and well-annotated
cancer CNA data resource. The Progenetix database aims
to provide this kind of service to the research community
(35). cCGH and aCGH data in the full-text or supplemen-
tary files of published papers are extracted, processed
and stored in the database in a standard format (36).
Increasingly, data processed from raw probe files as part
of the arrayMap project are added after supervised ana-
lysis and data review (37). In contrast to arrayMap with
its representation of probe intensity data, Progenetix
captures the robust, qualitative aspects of CNA
(mapping and directionality), without attempts toward
fine-grained interpretation of CNA magnitude or inter-
pretation of absolute copy numbers.
Other resources for annotated CGH data include NCBI

SKY/M-FISH and CGH (38), The Cancer Genome Atlas
(TCGA) (29), CanGEM (39), CaSNP (40) and arrayMap
(37). Each of these databases focuses on particular data
sources or techniques and provides unique features. So
far, the Progenetix database represents the quantitatively
largest resource for annotated CNA data from whole
genome profiling experiments in cancer (35). As a result
of over 12 years of data curation, the database currently
contains over 30 000 individual CNA profiles from several
hundreds of cancer types. Moreover, it provides a wealth
of associated clinical information curated from publica-
tion texts or supplementary data files.
Here, we describe recent feature updates and relevant

improvements of the Progenetix resource, and demon-
strate the novel data visualization interface and online
analysis tools that have been added since the database
was released 12 years ago.

12-YEAR DATA GROWTH

At the time of the original publication of the Progenetix
resource in 2001, our website represented a first effort to

provide a single resource for accessing whole genome copy
number profiling data from CGH experiments (35). The
database contained a total of 490 cases collected from 19
publications. The basic inclusion criteria were (i) whole
genome CNA data from (ii) cancer or pre-malignant
samples and (iii) presented in peer-reviewed publications.
In contrast to other resources, e.g. the SKY/M-FISH and
CGH database then under preparation at the NCBI
(38,41), Progenetix was intentionally designed as a
curated database without user driven upload and data ma-
nipulation options. Although many quantitative and quali-
tative improvements having been implemented over the
years, these basic design decisions have remained in place.

The latest release of Progenetix (July 2013) now
presents 30 687 samples from 1006 publications, represent-
ing a more than 60-fold data expansion compared to the
resources initial state. Each sample presents the whole
genome copy number profile of an individual specimen
(DNA from a cancer or leukemia sample or cell line).
Included in the data set are 10 261 CNA profiles generated
by genomic array experiments, while the remaining are
based on cCGH. Currently, samples in Progenetix have
been classified into 363 cancer types according to the
International Classification of Diseases in Oncology, 3rd
Edition (ICD-O 3) (42). Table 1 lists the summary of
database content classified by disease locus.

The dramatic increase in data content is primarily the
result of the continuous expansion of published studies
containing CGH based data. To ensure a complete iden-
tification of articles, we rely on a complex combination of
keywords to search PubMed and evaluate returned as well
as referenced articles with respect to data from CGH
analyses on cancer samples. Before the subsequent data
extraction step, these studies must fulfill two basic criteria:
(i) the results are obtained from a complete whole-genome
screening (with or without sex chromosomes) and (ii) ex-
periments were on a case-by-case basis (i.e. no pooled
samples). So far, we have been able to identify 2390
such publications, reporting 35 703 cCGH and 68 546
array-based CNA profiling experiments. As the survey
data indicates, only a minority of all identified articles
contain accessible case-level data. Frequently, the
authors provide only summary results or describe the
copy number alterations in selected genes or regions of
interest, instead of providing the sample-specific whole
genome CNA data generated through their experiments.

If sample-specific CNA data are available, a variety of
formats can be encountered, such as plain text description
in ISCN (43) related formats or based on ‘Golden Path’
coordinates. Data in supplementary materials of array-
based studies are frequently given as probe-specific
normalized log2 ratios. For the sake of convenience of
storage and analysis of CGH data from different
formats, a data processing and collection pipeline was es-
tablished with the final format being the ‘Golden Path’
mapped copy number status information of imbalanced
genomic regions. ISCN style data are converted using a
dedicated, regular expression based engine, while for array
probe based data sets (e.g. raw CEL files or log2 value
tables) standard segmentation and thresholding methods
are being employed [for details please refer to (37)].
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Besides the absolute content of the database with respect
to the number of individual records, the information depth
of associated data has been extended greatly. While origin-
ally clinical data were limited to the consistently available
diagnostic classification and sample locus information, we
recently put emphasis on extracting other types of clinical
data with possible relevance for the association with
genomic features. Publications were inspected by the
database curators to extract case-level clinical features,
including patient age, gender, follow-up, survival status,
tumor stage, grade and sample source (e.g. primary
versus metastasis, recurrence, cell line). Although these
criteria are not consistently available, the vast amount
of samples will allow for integration of these associated
features in analyses of considerable data sets, e.g. the
current edition contains 3853 samples with complete
follow-up/survival data (Supplementary Figure S1).

USER INTERFACE

Representation of CNA data in Progenetix is based on the
principles of (i) aggregation of CNA data for different
classification values and (ii) active aggregation of CNA
data for dynamically generated data subsets. Pre-defined
data categories with automatic one-click data aggregation
are publications (defined by PMIDs), ICD-O 3
morphologies (ICD-O 3 codes), disease loci (ICD topog-
raphy codes) and Surveillance, Epidemiology and End

Results (SEER) categories (44). In addition, for the
majority of cases we have assigned a value for a
category called ‘Clinical Groups’ (see below).
Of the different categories, publications have a special

place since we also present publication entries for articles
with discussion of CGH data sets but without correspond-
ing samples in the database (e.g. no sample specific data is
listed or deposited). The ‘Search Publications’ page
contains the following input fields: (i) Author Name; (ii)
Title Keyword: search for keyword occurrence in publica-
tion titles; (iii) Text Search: search for keyword occurrence
in title, author, journal and abstract and (iv) PubMed IDs.
In addition, filtering is available to (i) select only publica-
tions with data in Progenetix and (ii) to limit publications
to those containing cases generated by aCGH, cCGH or
both platforms.

Active data aggregation

While earlier editions of the Progenetix resource relied on
fixed categories with pre-computed CNA frequency
profiles, the current version is based on sample-specific
data with dynamic search and aggregation options.
Samples can either be retrieved using ab novo queries, or
can be selected based on the categories above. Each option
leads to a second selection step, in which all values existing
in the currently active data subset are presented for an
extended list of categories, allowing for further selection-
based restriction of the data before processing and
visualization.
For the ab novo data retrieval, the ‘Search Samples’

form has options to query for: (i) Text: free text search
over most fields; (ii) ICD-O 3 Code: full or partial (start-
anchored); (iii) ICD Topography Code: full or partial; (iv)
PMID; (v) Sample IDs; (vi) Array Series IDs, e.g. GEO
‘GSE’ and (vii) Sample Source: metastasis, cell line and
primary tumor. Other selectors include ‘Technique’
(aCGH versus cCGH) and the option to only display
data with completed clinical follow-up. All these search
fields can be combined using boolean AND (intersection)
or boolean OR (union) mode.
For the new version of Progenetix, one noteworthy

feature is given through ‘Find CNAs by Gene or
Region’, which is particularly useful for gene-specific
queries. Gene names, chromosome bands or regions of
interest can be specified, and tumor samples with CNAs
in the queried genomic regions will be returned. Such
analysis may be able to pinpoint cancer genes that are
disturbed and may have a causative relationship to the
corresponding cancer. The input box suggests plausible
gene names and supports auto-completion. Moreover,
the type of copy number alterations, gain, loss or both,
can be specified.
As an example usage scenario, here we use the interface

to explore data related to carcinomas of the esophagus.
We start by using the keyword ‘esophagus’ in the ‘Text
Search’. In total, 475 samples are returned and presented
on the ‘Sample Selection’ page (Figure 1A). In this page,
the search results can further be filtered to present only
samples fulfilling selected criteria. Clicking on the ‘Sample
Details’ button will present the list of all samples with

Table 1. The full complement of Progenetix data summarized by
cancer loci

Cancer loci cCGH aCGH Publications

Hematopoietic and
reticuloendothelial systems

2580 2689 170

Lymph nodes 1181 1164 61
Breast 1259 1012 65
Cerebellum 674 765 59
Brain, NOS 845 497 78
Cerebrum 452 749 49
Liver 1054 126 56
Stomach 977 178 46
Skin 889 184 46
Connective and soft tissue, NOS 1001 57 63
Kidney 723 295 40
Large intestine, excl. rectum and

rectosigmoid junction
572 429 51

Ovary 587 146 27
Prostate gland 640 95 20
Lung and bronchus 441 258 28
Nervous system, NOS 421 246 18
Urinary bladder 364 223 14
Cervix uteri 411 118 17
Peripheral nervs incl. autonomous 290 233 24
Esophagus 426 28 22
Pancreas 376 50 17
Thyroid gland 385 19 17
Pleura 311 72 24
Bones and joints 325 25 21
Spleen 56 222 11
Other 3677 845 237
Total 20 917 10 725 1006

NOS, not otherwise specified.
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detailed information, such as clinical data and links to
PubMed and/or GEO datasets, where available. In the
following section of the page, several selector fields
provide the corresponding values encountered in these
475 samples. Items in these blocks can be selected for
the next analysis step. In this example, categories
include: (i) Article: the samples were derived from 22 pub-
lications; (ii) Morphology: eight ICD-O 3 types are dis-
played; (iii) Locus: two tumor sites are presented; (iv)
Clinical Groups and SEER groups; (v) Sample Source
and (vi) Technique. Additional options to subset the
data are again. (vii) Find CNAs by Gene or Region and
the possible restriction to samples with (viii) Clinical Data.
After the ‘sample selection’ step, the resource advances

to the ‘Data Selection and Visualization Options’ page
(Figure 1B). The purpose of this interface is to selectively
customize plot options and parameters. Of the param-
eters, we here only want to mention the possibility to
restrict CNAs only to such of a given size range (e.g.
excluding all whole-chromosome changes) with a
‘Segment Size Filter’; the labeling of regions of interest
using a gene selector or free Golden Path coordinate
entry in ‘Mark Region or Gene Locus’; the adjustment
of histogram plot parameters such as plot size, range
and labeling in ‘Histogram Plot Options’ as well as the
type of data clustering method and sample display. For
complex data sets, one helpful option is the ‘Group
Analysis’ feature. As example, when used in the esophagus
approximately data set, setting the value to
‘ICDMORPHOLOGY’ and requiring a minimal group
number of 50 will produce additional CNA histograms
for both adenocarcinomas and squamous cell carcinomas
of the esophagus, as well as a small heatmap presenting

the CNA frequencies of those groups side-by-side
(Supplementary Figure S2).

Another option in this section is to generate both group
specific as also locus related Kaplan–Meier plots for
samples with follow-up data. This option may be used
to explore the possible association of regional CNAs
and clinical risk, as a preliminary step for proper gene-
specific risk attribution.

Although at this time we do not attempt to provide the
infrastructure for hosting of user generated analysis
results, a basic framework is given to generate named,
temporary directories. This provides users with the
option to define a protected directory in which to save
intermediate analysis results. Detailed instructions on
how to navigate the website are available in the ‘FAQ &
Guide’ page: http://www.progenetix.org/cgi-bin/reader.
cgi?project=progenetix&tags_m=guide.

Pre-defined data organization

Additionally to the ab novo sample selection, the contents
of Progenetix can be browsed through pre-defined cancer
groups as classified by ICD-O 3 coding system, tumor site,
clinico-pathological entities and SEER (44), respectively.
These groups allow users to quickly access data for a
specific cancer type. At the moment, the most comprehen-
sive and detailed standard for cancer classification is ICD-
O 3 (42). It is a coding system developed by the World
Health Organization and describes entities based on
tumor site (topography) and histology (morphology). In
total, 363 ICD-O 3 entities are recorded in Progenetix and
serve as the primary classifier for most analyses. The
second standard classifier is based on the ICD-O topog-
raphy code, i.e. the tumor’s site (Table 1). According to

Figure 1. A screenshot of the data selection page showing the new layout of the search fields. (A) Sample selection. (B) Data selection and
visualization options. In this example, 475 records were returned when searching for the keyword ‘esophagus’.
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this system, all database records are categorized to 80 loci;
however, this also mirrors the fact that for many samples
the assignment granularity is limited (e.g. C069 ‘mouth,
NOS’ instead of e.g. C062 ‘retromolar area’), and/or that
sample sizes for some specific loci are limited, leading to
assignment to the more general category. The third clas-
sification system represents clinico-pathological entity
groups; essentially, this system captures the
approximation of standard diagnostic assignments
(e.g. ‘Carcinomas: Colorectal Adenoca’ for all types of
adeno-carcinomas with location in large intestine or
rectum). So far, 83 diagnostic groups have been defined
in Progenetix. The last system is established by the
Surveillance, Epidemiology and End Results, a public
resource for cancer statistics or cancer surveillance
methods. According to Progenetix data, 70 SEER cancer
groups are represented in the database.

DATA ANALYSIS TOOLS

Data visualization and exploration

To exemplify the new data visualization interface and the
online analysis tools of Progenetix, Figure 2 illustrates the
results of processing the pinealis region tumor data, rep-
resented by 27 samples. The first panel of Figure 2 is a
circos-style (45) plot that shows the frequency and concur-
rence of all copy number alterations found in pinealis
region tumors (Figure 2A). The chromosome ideograms
are displayed with cytobands, oriented from the p-arm of
chromosome 1 to the q-arm of chromosome 22 in a clock-
wise direction with centromeres indicated as purple bands.
The frequency of genomic gains and losses among the 27
samples is presented in the inner circle by yellow and blue
areas, respectively. If the dataset is of low-complexity,
there will be ribbons representing the connections
between all concurrent in-case imbalances. In the chromo-
some ideogram (Figure 2B), yellow and blue bars with
percentage label on the right and left side of the chromo-
some represent the frequency of gains and losses, respect-
ively. The histogram shows the CNA frequencies
throughout the genome for building a profile of chromo-
somal rearrangement hotspots (Figure 2C). This figure
may be particularly helpful in the genome-wide identifica-
tion of copy number imbalance peaks, which may point to
genomic loci harboring cancer related genes. Sample-
specific CNAs are displayed in the ‘matrix plot’
panel, with hierarchical clustering applied as selected
(Figure 2D). In this case, color labels point to different
values for PubMed ID, ICD morphology and topography
and will be detailed as ‘mouseover’ event when opening an
SVG version of the image.

If several cancer types are selected for this analysis, dif-
ferences in CNA patterns among different cancer types
can usually be observed. In the frequency matrix, a
black-to-yellow gradient is used to indicate the frequency
of gains from lowest to highest, while the frequency of
losses is given by the gradient from black-to-blue
(Figure 2E). This matrix is particularly helpful when
comparing CNA profiles among several cancer groups
with the intuitive and global view of regional hotspots.

The last section is the ‘Sample Data’, listing the
summary of each sample that included in this analysis
(Figure 2F). Clicking on an individual record will lead
to a page that provides detailed information of the
single sample, as well as the graphical representation of
the samples CNAs.

Gene CNA frequencies

Cancer related genes may play crucial roles in cancer
development, and can be classified into the two basic
types of oncogenes and tumor suppressor genes (8,9).
For a number of oncogenes (e.g. ERBB2, MYCN, REL
and CDK1), functional activation based on a ‘dose-effect’
due to genomic copy number gains has been shown.
Conversely, tumor suppressors are characterized by
reduced activity and frequently targets of genomic dele-
tions (e.g. TP53, CDKN2A/B, RB and APC). When
exploring a candidate cancer related gene, one of the inter-
esting questions is the frequency of copy number
abnormalities involving the gene’s locus in different
cancer types. In this new release of Progenetix, we
provide an online tool in the page ‘Gene CNA
Frequencies’, to help investigate cancer gene status
based on the large amount of tumor samples. Users can
search for single or combined imbalances by selecting gene
names from the auto-complete list, or manually specify
loci (cytogenetic bands or ‘Golden Path’ coordinates)
and types of the changes of interest. Furthermore,
CNAs can be limited to focal events (e.g. smaller than
5Mb), to increase the specificity of the required change
through the exclusion of large CNAs affecting multiple
possible targets. Please note that this option is somewhat
limited due to the limited spatial resolution of the cCGH
data sets (13) included in Progenetix. The ‘Minimal Case
Number’ field provides a threshold to improve the reliabil-
ity of the query results through the optional removal of
cancer entities with limited sample number. The result
page indicates a list with subset specific data: (i) the
relative number and percentage of samples with the hit;
(ii) a score value that weighs the hit frequency by the
subset’s overall genome complexity (hit frequency
divided by the average genome CNA coverage of the
subset’s samples). Here, higher complexity samples will
have a lower score, due to the overall high probability
to display a hit in any given region. The returned
samples can be used for further processing and
visualization.

OTHER IMPROVEMENTS

User file processing

We provide a ‘User File Processing’ interface for users to
take advantage of the online tools by uploading their
private data. These data can be tab-delimited text file, a
pre-processed JSON data file (e.g. from a previous
Progenetix analysis run) or one of a number of segmenta-
tion file types as generated by genomic array analysis pro-
cedures. Depending on the file type selected, CNAs may
be annotated either using Golden Path coordinates and
CNA type or value/threshold combinations, or be
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provided in a cytogenetic annotation format (ISCN ‘ish
cgh’ style). Uploaded data are processed into the standard
internal BSON format, and can be retrieved as JSON file
for storage or directly be processed in the standard visu-
alization pipeline described before.
Although we focus on human cancer genome data, the

online visualization and exploration tools can be applied
to other species. Recently, the Danio rerio genome coord-
inates have been added to the tool to allow for zebrafish
genome data processing. This interface is easily extendable
upon user request.
Additionally to the general curation and representation

of cancer CNA data, Progenetix is now being used as
hosting framework for disease-specific project data. We
have recently started to provide the backbone and data
interface for two collaborative projects. The DIPG project
focuses on diffuse intrinsic pontine gliomas (46,47).
It aims to provide a central resource for researchers to
investigate genome-wide profiling data from these
devastating childhood brain tumors as well as from
other rare, aggressive pediatric gliomas (48,49). A signifi-
cant amount of data has been submitted into the database
by collaborators and supporters and was integrated with
publicly available data sets to provide a systematic review
and meta-analysis of these diseases. The other current
project is aimed at cutaneous T-cell lymphomas and
related, inflammatory skin diseases.

Database implementation, formats and API

The Progenetix site runs on a MongoDB backend in a
Unix environment (Apple Mac OS X). Data are stored
in a sample-specific manner, with pre-computed CNA
status interval data (1Mb resolution) and sample-specific
segments (resolution only limited by original analysis tech-
nique). For data downloads, JSON data files are provided,
as well as tab-delimited data formats for CNA status

matrices and sample annotation files. With a general avail-
ability since February 2013, Progenetix now provides a
query based API for programmatic access and image gen-
eration. Documentation including query parameters and
examples as well as relevant updates regarding query con-
structs and output formats can be accessed through
the documentation at http://www.progenetix.org/cgi-bin/
reader.cgi?tags_m=api.

CONCLUSION

Progenetix is a comprehensive, curated oncogenomic
database that provides CNA data to the human cancer
research community. Over the past 12 years, the
database has undergone an extensive expansion and sig-
nificant qualitative enhancements. Particularly, the
database has made the transition from a ‘cytogenetic’
resource based on cancer cytogenetic data to an integrated
resource incorporating cancer genome data from
increasing variety of genome analysis techniques.
Likewise, many ideas of the user interface improvements
and data analysis tools have been implemented based on
suggestions from users. While providing genomic aberra-
tion data from the largest range of cancer entities avail-
able, in the future we will especially focus on an extension
of the data model and improved inclusion of associated
clinical information, as well as a tighter integration with
online repositories and array repositories (e.g. http://www.
arraymap.org).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Figure 2. Results page of online statistical analysis tools. In this example, 27 pinealis region tumor samples have been selected. The functional blocks
illustrate the website’s new functionality. (A) Circular CNA plot. (B) Histogram of genomic imbalances. (C) Frequency plot across the genome.
(D) Matrix plot showing case-level CNAs. (E) Frequency matrix. (F) Sample details and links to single case visualization. See text for further details.
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